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Abstract—Cutoff-based randomized clinical trials (RCTs) are designed to balance
ethical and scientific concerns. Patients scoring below a cutoff score on a baseline
measure (i.e. the least severely ill) are assigned to the control-treated group, those
scoring above a second cutoff score (i.e. the most severely ill) are assigned to the
test-treated group, and those scoring within the interval (i.e. the moderately ill) are
randomly assigned. This paper provides a formal illustration on the statistical analysis
of cutoff-based RCTs using data from the Xanax Cross-National Collaborative Study.
To overcome problems specific to cutoff-based designs, we generally recommend a

backward elimination approach that tests interactions before main effects.

Cutoff-based RCTs Clinical trials
Quasi-experimental designs

INTRODUCTION

In principle the conventional or traditional ran-
domized clinical trial (RCT) provides the most
powerful and scientifically rigorous method for
comparing the efficacy of treatments. In recent
years, however, ethical concerns about the RCT
have been raised when strong a priori infor-
mation exists that the test treatment is more
effective than the control treatment. Critics of
the RCT claim that randomization is unethical
because research subjects are assigned arbitrar-
ily to test-treated and control-treated groups
irrespective of their needs or willingness to incur
risk at the time of assignment. Under the as-
sumption that accumulating data suggest that
the test treatment may be better than a control
treatment, and that the disease under investi-
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gation may be potentially very serious, critics of
the RCT argue that random assignment denies
the test treatment to some study patients who
could benefit most by receiving the test treat-
ment or who could be more willing to undertake
the risks (i.e. side effects) that may come with
the test treatment. They also claim that random
assignment assigns some patients to the control-
treated group who are not as much in need of
the test treatment (and can therefore afford to
forego the test treatment for now) or who are
not as willing to chance any adverse effects that
may be caused by the test treatment.
Conventional RCTs can raise ethical
difficulties, even when the undertaking is im-
portant enough, when there is strong evidence
that a test treatment may offer a greater benefit
than a control treatment. Such evidence can
come from case series, observational studies,
and non-randomized trials with concurrent con-
trols, historical controls, or no controls. For
instance, recent controversies regarding the
ethics of implementing RCTs in such life-threat-
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ening diseases as extracorporeal membrane oxy-
genation in neonatal intensive care, AIDS, and
cancer have stirred national debates about the
feasibility of RCTs [1-3].

Of course, no complete certainty exists favor-
ing a test treatment over a control treatment;
otherwise there would be no need to conduct an
experiment. While existing data and judgments
are not sufficient, there may be a reasonable
amount of existing and accumulating evidence
that favors a new therapy over a control
therapy, enough to incorporate into the study
design.

Recent ethical and logistical criticism of the
traditional RCT have become so heated that
statisticians and methodologists have proposed
new variations of the traditional RCT when the
test treatment is believed, either a priori or from
study data, to be more beneficial than a control
treatment [4-6]. In an effort to balance ethical
and scientific concerns, Trochim and Cappelleri
[6] offered a new hybrid design that combines
random assignment with assignment by one or
more cutoff values on a baseline variable (e.g.
severity of illness). In such a “cutoff-based”
RCT, persons scoring below a cutoff score on a
baseline measure (i.e. the least severely ill) are
automatically assigned to the control-treated
groups, those scoring above a second, higher
cutoff (i.e. the most ill) are automatically as-
signed to the test-treated group, and those scor-
ing in the interval between the cutoff scores (i.e.
the moderately ill) are randomly assigned to
either group. Depending on the baseline score,
the patient is assigned either to treatment ran-
domly or by the need-based, clinically-related
baseline score. Their article also considered a
single cutoff-point design with no randomiz-
ation, known as the regression-discontinuity
(RD) design, whereby all subjects scoring above
a cutoff value are automatically placed in one
group, while all subjects scoring below the same
cutoff value are automatically placed in the
other group.

In selecting the cutoff point(s) and deciding
where “low risk” patients lie along the baseline
continuum, the analyst should consider the fol-
lowing factors: the treatments involved, the
width of the randomization interval, the base-
line indicator itself, the nature of the disease,
substantive grounds, statistical power, the de-
sired interval and overall proportions assigned
to the treatments, ethical considerations, pro-
gram resources, and a sufficient number of
baseline values to the left and right of the cutoff
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point(s) to enable adequate estimation of the
true outcome-baseline functional form [7].
These factors were considered, for instance, in
deciding the two cutoff points and the “low
risk” patients of a cutoff-based RCT in the
Cocaine Treatment Study at the University of
California at San Francisco [8]. The baseline
measure was a composite of four subscales, each
with a different set of ordinal items. These four
subscale items were weighted and added
based on clinically sensibly criteria from staff
members.

Trochim and Cappelleri [6] provided a review
of cutoff-based assignment, conducted Monte
Carlo simulations on six cutoff-based RCT de-
sign variations, and compared them to the
traditional RCT design and the single cutoff
(RD) design. Moreover, they performed a sec-
ondary analysis of data from the Cross-Na-
tional Collaborative Study [9-13] to illustrate
the cutoff-based configurations, with the Shee-
han Clinician Rated Anxiety Scale [14] used as
the baseline and outcome indicator. The sec-
ondary analysis confirmed the simulations and
illustrated how cutoff-based designs might look
with real data.

Intended to be only preliminary, the illustra-
tive secondary analysis was limited in that an
analysis of covariance model was directly ap-
plied for each design variation instead of devel-
oping an appropriate model. This paper adds to
the earlier analysis by detailing the modeling
building process, with emphasis on the statisti-
cal analysis of the cutoff-based designs, and
comparing treatment estimates of cutoff-based
RCTs with those of the original RCT. It should
be kept in mind that cutoff-based RCTs are not
post-hoc procedures applied to the traditional
RCT in which all patients are randomized, but
rather are alternatives to the traditional RCT
when randomization cannot be done for at least
a portion of the enrolled patients.

THE REANALYSIS OF THE XANAX STUDY

Only those aspects relevant to the methodo-
logical purposes at hand are mentioned. The
study was a double-blind, cross-national RCT
undertaken to evaluate the comparative efficacy
of Alprazolam (Xanax) to placebo primarily in
the treatment of panic disorder and associated
agoraphobia. The original sample consisted of
542 subjects who were randomly assigned, with
equal probability of being in either the Xanax
group (r = 270) or the placebo group (n = 272).
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The reanalysis investigates the immediate (i.e.
1-week) effect of Xanax relative to placebo. The
Hamilton Anxiety Rating Scale [15], which con-
sists of a clinician’s rating of 14 items (e.g.
‘“anxious mood”, “‘tension”, “‘insomnia’) on a
0 (none) to 4 (severe, grossly disabling) ordinal
scale, was the sole measurement instrument that
we examined. Unweighted average scores from
the Hamilton Anxiety Scale, averaged across its
14 items, were taken from a clinician’s assess-
ment of a given patient and were used as both
baseline and outcome scores. Patients with
higher average scores suffered (presumably)
higher levels of overall anxiety and, by impli-
cation, were more in need of the drug intended
to reduce anxiety.

There are three reasons for selecting the
Hamiiton anxiety rating scale. First, in a real
study employing cutoff values, clinician ratings
(as well as objective measures of symptomology)
would probably be a primary candidate in con-
structing a baseline assignment measure. Sec-
ond, because the effectiveness of Xanax on
anxiety is well-established, the Hamilton scale,
being valid and reliable to diagnose anxiety
levels, is likely to show detectable efficacy of
Xanax treatment relative to placebo treatment.
Third, average scaled scores of the scale should
allow sufficient variability in the baseline
measurement, a desirable characteristic when
implementing cutoff-based designs.

CONSTRUCTION OF THE CUTOFF-BASED
DESIGNS

Cutoff-based designs were constructed by se-
lectively discarding cases from the original, fully
randomized data set in order to simulate cutoff-
based assignment. Four cutoff-based exper-
imental designs-—three cutoff-based RCTs and
the single-cutoff RD design—were considered
along with two fully randomized (i.e. tra-
ditional) experimental designs, one containing
the maximum number of baseline-outcome ob-
servations and the other containing about half
as many. Based on the original set of 539
patients (out of 542) with recorded baseline
measurements on the Hamilton Anxiety Scale,
the baseline variable was approximately
normally -distributed, with very slight right-
skewness, as evidenced by its mean of 1.55 being
close to its median of 1.50.

We measured possible treatment effects of all
six models at the baseline value of 1.55 on the
baseline Hamilton Anxiety Rating Scale.
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Choosing the baseline value of 1.55, which was
near the center of the approximately normal
baseline distribution, also served to partition
about 50% of the patients to each group in the
cutoff-based designs, allowing them to be evenly
compared among themselves and with the
equally-balanced randomized designs with re-
spect to efficiency. Therefore, each cutoff-based
RCT had about 50% of its randomized patients
in each group and each of the six models had
about half of all its observations in each group.

Specifications for constructing the two tra-
ditional RCTs (and sample sizes) particular to
the Xanax study were as follows:

® The full-sampled RCT (sample size, n = 516)
The full-sampled RCT model was based on a
fully randomized clinical trial of those patients
who had both pre- and post-measurements on
the Hamilton Anxiety Rating Scale.

® The half-sampled RCT (n = 243)

We randomly discarded 47% of the original
cases so that it had about the same number of
cases as the cutoff-based designs.

In each of the cutoff-based RCT, all Xanax-
treated cases that resided below the interval of
randomization and all placebo-treated cases
that resided above it were discarded. All
patients that fell within the interval were
randomly assigned with equal probability to
each treatment condition. Specifications for
constructing the four cutoff-based models in
the Xanax study were:

o The single cutoff RD design (n = 246)

All placebo-treated cases that fell above the
single cutoff value of 1.55 and all Xanax-
treated cases that fell below it were discarded.

® The small cutoff-interval RCT (n = 272)

A small-sized cutoff interval was arbitrarily
defined here as an interval containing 17% of
all cases considered. This was accomplished
by using the baseline values of 1.5 and 1.6
(inclusive) to bracket the interval of ran-
domization.

o The medium cutoff-interval RCT (n = 296)

A medium-sized cutoff interval was (arbitrar-
ily) defined here as an interval capturing 31%
of all cases considered. This was accomplished
by using the baseline values of 1.4 and 1.7 to
form an interval of randomization.

® The large cutoff-interval RCT (n = 315)

A large-sized cutoff interval was defined here
as an interval capturing 46% of all cases
considered. To accomplish this, baseline val-
ues of 1.35 and 1.75 (inclusive) were used as



264

the two cutoff points bracketing the cutoff
interval

THE STATISTICAL ANALYSIS OF
CUTOFF-BASED DESIGNS

Specifying the baseline-outcome distribution

Perhaps the most challenging and critical step
in the statistical analysis of cutoff-based exper-
imental designs is to specify the correct baseline-
outcome functional form [16]. Cutoff-based
designs, with or without some randomization,
require extrapolation of a linear, polynomial, or
other functional baseline-outcome relationship
(e.g. log) to a range of the baseline values not
covered by the data for that treatment. No such
extrapolation is needed, of course, in fully ran-
domized designs as both control-treated and
test-treated group regression lines spread over
the entire range of the baseline distribution.
Extrapolation of regression lines in cutoff-based
designs can result in a biased treatment estimate
when the true regression line of either treatment
group in the area where that group does not
receive the other treatment is not a mere exten-
sion of the observed (fitted) regression line of
that group [7, 16, 17].

In this illustrative analysis the “gold stan-
dard”—the conventional RCT-—is known;
however, in practice the “gold standard” will
not be known. As such, in practical applications
there is less than full certainty on whether the
cutoff-based model has captured the truth in the
region where data are not observed. A few
complementary guidelines are offered to in-
crease the validity and robustness of the cutoff-
based design [18].

One approach, which is especially promising
in the typical situation when the control treat-
ment is the standard one, resembies a short pilot
study and aims at first determining the expected
regression line of the control-treated group in
the area that will be eventually assigned only to
test treatment. Here al/ subjects are measured
on baseline, then given the control treatment,
and measured on outcome after a period of time
on the control treatment. The bivariate relation-
ship between the baseline and outcome
measures would probably lead to the correct
functional form needed for the range of baseline
values not covered by the control treatment in
the actual cutoff-based study that follows. After
a reasonable wash-out period, a further en-
hancement has all subjects temporarily on test
treatment in order to determine the expected
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regression line of the test-treated group in the
area that will be eventually assigned only to
control treatment. This approach assumes that
this functional form will not change in the
actual study, a fairly benign assumption in most
cases.

A second strategy is to smooth the data.
This can be accomplished, for example, by
using a moving average procedure such as
one that plots average values of the outcome
variable for narrowly defined columns of the
baseline variable. A third option is based on
strong a priori information regarding the func-
tional form (whenever such is available) as
when, for instance, historical data are available.
A fourth guidelines adopts the recently pro-
posed method by Robbins-Zhang [19-22],
which makes no assumption about the nature of
the baseline-outcome regression, that relies on
empirical Bayes analysis to arrive at an unbiased
treatment estimator under certain conditions.
A fifth strategy, which is adopted in this
article, uses a standard backward elimination
approach.

Undoubtedly, the best alternative is to
include as much randomization as possible.
No benchmark can be given on when a cutoff-
based design is ‘“close enough” to a con-
ventional RCT, because the degree of
similarity between the two design types is
essentially a sample phenomenon; what may
be “close enough” for one data set may not be
so for another data set.

Specifying the model

Any appropriate functional form between
outcome and baseline can be used. We follow a
polynomial regression approach to specify the
baseline-outcome functional form and to ana-
lyze the cutoff-based models, because the out-
come-baseline scatterplots (see Fig. 1 for
instance) show that the outcome measure can be
describable as a polynomial in the baseline
assignment variable, which is an assumption of
the approach. Two types of standard backward
elimination strategies have been proposed; both
of them will be employed here. One type statisti-
cally evaluates the highest main effect term in
tandem with its corresponding interaction term
{7, 16]. The second type is a hierarchical ap-
proach in which interaction terms are con-
sidered before main effects [23]. No reason has
been previously given to prefer one approach
over the other.



Analysis of Cutoff-based RCTs

The general polynomial regression model
setup can be expressed as follows:

yi= Bo‘*‘ ﬁlfi+ Bzz.’+ 33)21'2,"" Bczf%'*' ﬁsffz.'
+ BX3+ BRiIzi+ .. +e
where

X; = baseline measure for individual { minus
the cutoff value

y; = outcome measure for individual i

z,=treatment group variable (1 if test-
treated participant; 0 if control-treated
participant)

, = intercept estimator

; = linear slope estimator

» = treatment effect estimator

B; = linear interaction estimator

e, = sample regression disturbance term

T T

The other regression estimators are the co-
efficients for powers of %, higher than one and
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for higher order interaction. The major null
hypothesis of interest

H,: f, =0 (i.e. the treatment effect
parameter is zero)

is tested against the alternative hypothesis
H,: 5,#0.

Trochim [7, 16] gave a rule of thumb that
starts with an initial model that goes two orders
of polynomial higher than that indicated by the
number of times the bivariate baseline-outcome
distribution “bends” or ‘“flexes”. If a poly-
nomial relationship is not warranted, an appro-
priate transformation (e.g. log, square root) on
either baseline or outcome or both should be
considered.

We define PREHAM as the (average) base-
line Hamilton score minus the cutoff value of
1.55, and POSTHAM as the (average) original
outcome Hamilton score. Figure 2 clearly shows
a positive linear relationship between
POSTHAM and PREHAM for all observations
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Fig. 1. Scatterplot for medium cutoff-interval RCT.
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Fig. 2. Scatterplot for full-sampled RCT.

from the full-sampled RCT; the scatterplot for
the half-sampled RCT (similar to Fig. 2) con-
curred, as expected.

The full and half-sampled RCT models
shared the same set of initial variables as the
cutoff-based models so that their coefficients
and standard errors of their predictor variables
can be directly compared. The full-sampled
RCT was taken as the “gold standard” model,
upon which the truth was based for these data,
by which the other five models were compared
and evaluated. A two-tailed hypothesis test was
implemented at the 0.05 level of significance
to test whether or not to reject a given null
hypothesis.

Figure 1 shows that the scatterplot from the
medium cutoff-interval RCT had a linear base-
line-outcome relationship; scatterplots for the
other cutoff-based designs (which are similar to
Fig. 1) also showed a prominent positive linear
relationship. So, with no visually apparent
bends in the baseline-outcome scatterplot, the
*“flexion point” rule of thumb suggests that the

initial model for each cutoff-based model should
regress POSTHAM on PREHAM, the binary
treatment group variable (TRT, coded 0 for
placebo-treated, 1 for Xanax-treated), the linear
interaction term (INTER = PREHAM«+TRT),
the quadratic term (PREHAM?), and the
quadratic interaction term (QINTER = PRE-
HAM?*TRT). (An asterisk (*) indicates multi-
plication.)

Model building with main effects and interactions
tested together

Evaluating main effects and their interactions
first considers the highest order term and its
corresponding interaction. The results of all six
models showed that the coefficients for the
quadratic term and the quadratic interaction
term were not statistically significant. The co-
efficients of QINTER had p-values that ranged
from as high as 0.958 for the RD model to as
low as 0.439 for the large cutoff-interval RCT;
the coefficients of PREHAM? had p-values that
ranged from as high as 0.925 for the small
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cut-off interval RCT to as low as 0.167 for the
large cutoff-interval RCT. These terms were
therefore dropped from all equations.

The results based on the regression of
POSTHAM on PREHAM, TRT, and INTER
showed that no strong evidence of linear inter-
action for the full-sampled RCT (p-
value = 0.119), half-sampled RCT (p-value =
0.357), and large cutoff-interval RCT (p-
value = 0.126), but did show evidence of linear
interaction for the RD design (p-value = 0.05),
small cutoff-interval RCT (p-value = 0.025),
and medium cutoff-interval RCT (p-
value = 0.041). Therefore, the final models for
the two RCTs and large cutoff-interval RCT
were analysis of covariance models, whereas the
final models for the other designs included an
interaction term in addition to the treatment
and baseline variables.

Table 1 contains the results of the best-fitting
model for each of the six design strategies. Each
of four cutoff-based experimental designs (the
RD design and the three cutoff-based RCTs)
and the half-sampled RCT gave a comparable
significant treatment effect estimate that fell
within about one standard error of the corre-

Table 1. Final results from the backward elimination
approach based on first testing the highest main effect term
and its corresponding interaction term

Standard

Model and variables  Estimate error p-Value
Full-sampled RCT (R 2 = 0.439)

Intercept 1.399 0.031 0.000

PREHAM 0.620 0.037 0.000

TRT —0.464 0.044 0.000
Half-sampled RCT (R ? = 0.460)

Intercept 1.338 0.047 0.000

PREHAM 0.686 0.054 0.000

TRT —0.400 0.066 0.000
Basic RD (R2=0.183)

Intercept 1.487 0.087 0.000

PREHAM 0.903 0.158 0.000

TRT —0.551 0.113 0.000

INTER —0.388 0.197 0.050
Small cutoff-interval RCT (R2=0.199)

Intercept 1.499 0.072 0.000

PREHAM 0.922 0.139 0.000

TRT —0.571 0.097 0.000

INTER —0.397 0.177 0.025
Medium cutoff-interval RCT (R? = 0.197)

Intercept | 1.462 0.064 0.000

PREHAM 0.861 0.128 0.000

TRT —0.535 0.086 0.000

INTER —0.334 0.163 0.041
Large cut-off interval RCT (R?*=0.194)

Intercept 1.361 0.048 0.000

PREHAM 0.631 0.074 0.000

TRT —0.472 0.077 0.000

sponding value of —0.464 from the full-sampled
RCT. Results from the RD design, small cutoff-
interval RCT, and medium cutoff-interval RCT
indicated that Xanax proved more effective than
placebo in lowering anxiety on average, but its
relative effectiveness was even more for patients
who suffered higher baseline levels of anxiety.
Results from the two RCTs and large cutoff-in-
terval RCT, on the other hand, indicated that
the beneficial effect of Xanax over placebo did
not depend on a patient’s baseline anxiety level.

Hierarchical model building

The hierarchical backward elimination ap-
proach first considers the highest interaction
term in the model and, after all interaction
terms are tested, then considers the highest main
effect term. The coefficient of the quadratic
interaction term for each of the six models was
clearly not significant, with its p-values ranging
from 0.439 for the large cutoff-interval RCT to
0.958 for the RD design. After we deleted the
quadratic interaction term from each model, the
coefficient of the linear interaction term was not
significant, with its p-values ranging from 0.108
for the full-sampled RCT to 0.933 for the RD
design. After we deleted the linear interaction
term from each model, the coefficient of the
PREHAM? term was significant for the four
cutoff-based experiments but not for the half-
sampled RCT (p-value=0411) and full-
sampled RCT (p-value =0.316).

Table 2 presents the results of the six models
based on the hierarchical regression approach.
Again each of the four cutoff-based experimen-
tal designs gave a comparable significant treat-
ment effect estimate that fell within about one
standard error of the corresponding value of
—0.464 from the full-sampled RCT. The two
RCTs and cutoff-based experiments are now in
full agreement about a strong treatment effect
but no interaction effect.

Again, standard errors of the treatment effect
exhibited a discernible hierarchy [5]: More ran-
domization implies more efficiency. The major
difference is that the regression models for the
two RCTs did not contain the PREHAM? term,
but the four cutoff-based experiments did.

AN EXPLANATION FOR THE DISCREPANCY
ABOUT TREATMENT
In the hierarchical regression approach, there
was no treatment-related discrepancy across
models. However, in the backward elimination
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Table 2. Final results from the backward elimination
approach in which interaction terms are considered
before main effects

Standard

Model and variables  Estimate error p-Value
Full-sampled RCT

Intercept 1.399 0.031 0.000

PREHAM 0.620 0.037 0.000

TRT 0.464 0.044 0.000
Half-sampled RCT

Intercept 1.338 0.047 0.000

PREHAM 0.686 0.054 0.000

TRT —0.400 0.066 0.000
Basic RD

Intercept 1.449 0.075 0.000

PREHAM 0.723 0.100 0.000

TRT —0.554 0.113 0.000

PREHAM? —0.150 0.073 0.040
Small cutoff-interval RCT

Intercept 1.468 0.064 0.000

PREHAM 0.740 0.090 0.000

TRT —0.575 0.097 0.000

PREHAM? —0.161 0.070 0.023
Medium cutoff-interval RCT

Intercept 1.440 0.058 0.001

PREHAM 0.709 0.083 0.001

TRT -0.536 0.086 0.001

PREHAM? —0.150 0.068 0.029
Large cutoff-interval RCT

Intercept 1.406 0.053 0.000

PREHAM 0.672 0.077 0.000

TRT —0.493 0.077 0.000

PREHAM? —0.131 0.067 0.050

approach where main effects are evaluated
jointly with their corresponding interactions, a
discrepancy arose between the two traditional
RCTs and three of the four cutoff-based designs
with respect to the baseline-treatment inter-
action term.

One exploratory technique to understand the
source of the discrepancy is to model the orig-
inal RCT data for both Xanax-treated and
placebo-treated cases separately for obser-
vations below and above the Hamilton anxiety
cutoff score of 1.55. A regression analysis for
baseline values below 1.55 with POSTHAM
regressed on PREHAM, TRT, and INTER
gave a significant treatment estimate of —0.588
with standard error of 0.095 (p-value = 0.00)
and a significant linear interaction estimate of
0.34 with a standard error of 0.17 (p-
..value = 0.05). The corresponding regression
analysis for baseline values at or above 1.55
gave a significant treatment estimate of —0.446
with a standard error of 0.110 (p-value = 0.00)
but the linear interaction estimate of —0.114
with standard error of 0.177 was not statistically
significant (p-value =0.517). In both of these

analyses there was no risk of curvilinearity
masquerading, spuriously, as interaction; the
coefficient of PREHAM? was clearly not signifi-
cant (p-value of about 0.95 in both regressions).

Additional evidence shows that for the
Xanax-treated group, but not for the placebo-
treated group, each of the 14 subscale items in
the outcome measurement scale of average
Hamilton anxiety scores had substantially more
cases with a value of zero than the correspond-
ing subscale item on the baseline measure. Even
though only a few average outcome scores were
exactly zero, the sufficient number of subscale
items that were zero for low risk Xanax-treated
patients leveled their average outcome scores.

These two pieces of evidence suggest that
there may have been a floor effect on the
POSTHAM outcome measure for low risk
patients given Xanax. Trochim [16] elaborated
on measurement-related artifacts in the RD
design. Because Xanax seemed to minimize
anxiety scores for those patients who had lower
baseline anxiety scores, and because the
measurement scale reached its lowest bound of
zero for “no symptoms present”, low risk
Xanax-treated patients cannot have done better
than “no symptoms present””. This may have
caused low risk Xanax-treated regression line in
three of the four cutoff-based designs to be more
level or flatter than the regression line for low
risk placebo-treated patients as evidenced by a
significant interaction effect when main effects
and their associated interactions were jointly
evaluated. The hierarchical regression approach
appeared to successfully adjust for this by using
a significant quadratic baseline term instead of
an interaction term. The two RCTs overcame
the floor effect contamination on outcome by
fitting the lines over all baseline values, across
both low and high risk patients.

It should be noted that each model generally
abided by the set of assumptions used for
multiple regression models. If an assumption
were seriously violated, standard approaches
would be used to remedy the violation.

GENERAL IMPLICATIONS

While based on only one case study, this
paper has general utility. The more the re-
gression lines in a cutoff-based RCTs cover a
wider range of the baseline continuum, the less
susceptible they are to extraneous factors (such
as measurement-related limitations, treatment
efficacy, or both) that can influence the fit in that



Analysis of Cutoff-based RCTs

limited range. Note that this issue in cutoff-
based methodology is related to but separate
from the more obvious extrapolation issue. A
regression line fit over a wider range of the
baseline continuum requires less extrapolation
and hence gives a more reliable fit. Yet the
correct form of the extrapolated regression line
(e.g. a linear one) may be still obtained over a
narrower range, but the fitted regression line
(upon which the extrapolation is based) may
have a different slope if it were based instead on
a wider range of baseline values. If the form of
the extrapolated regression lines is incorrect,
both main and interaction estimates are likely to
be biased. When the form of the extrapolations
are correct, however, flooring and ceiling effects
are more likely to render a biased interaction
estimate than a biased treatment estimate. Even
a RCT with its fitted regression line based on
only a portion of the baseline range may render
a different conclusion about treatment efficacy
than a RCT with its regression lines spread over
the entire baseline range.

Other than incorporating more randomiz-
ation, one way to counter a spurious interaction
effect due to the influence of measurement-re-
lated artifacts and other factors in cutoff-based
designs is to use a hierarchical backward elimin-
ation approach of polynomials in which inter-
action terms are considered before main effects.
Hierarchical backward elimination is the gener-
ally recommended strategy for polynomial mod-
elling. Covariates should be included in the
hierarchical regression analysis if they explain
additional variation in outcome.

An artifact masquerading as an interaction
effect in cutoff-based designs is not limited to
this data set. It is a general problem that extends
to all types of baseline-outcome relationships,
whether or not baseline and outcome are pre-
and post-measures, and to all types of diseases.
Regardless of the magnitude of the treatment
efficacy, a baseline or outcome measure that
does not adequately differentiate among sub-
jects who are either low scorers or high scorers
can give rise to a floor or ceiling effect on that
measure in cutoff-based designs [16].

The motivation for the cutoff-based design
could stem from uncontrolled and potentially
biased studies that treatment is better than
control. It is not uncommon in clinical trials to
observe the opposite of what was hypothesized.
In fact, this occurred when the regression—
discontinuity design showed a slightly negative
program effect for Title 1 compensatory edu-
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cation programs [24]. But observing a contrary
finding has no impact on the analysis of the
cutoff-based design, just as it has no impact on
the analysis of the fully randomized design.

Cutoff-based designs can accommodate
accumulating evidence during a cutoff-based
study that the control treatment is better by
increasing the proportion of patients assigned to
control treatment. One way to implement this is
by changing the randomization interval or as-
signment proportions within the interval of
randomization [6]. Even if control treatment
turns out to be better than test treatment, the
use of the cutoff-based design is justified given
the particular ethical situation, where patients
who are more sick before the study have a
greater need to experiment with the test treat-
ment and are more willing to assume potential
risks.

This empirical case study gives practical in-
sight that is not apparent from theoretical or
simulation work. It is the first and only study
that we know that formally creates and models
cutoff-based assignment from a real medical
data set based on complete random assignment
in order to find what would have happened,
relative to a conventional RCT, if an actual
cutoff-based RCT were undertaken instead.
More empirical studies like it are encouraged.
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