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Computer simulations in evaluation research are useful for (1) improving student
understanding of basic research principles and analytic techniques; (2) investigating the
effects of problems that arise in the implementation of research; and (3) exploring the
accuracy and utility of novel analytic techniques applied to problematic data structures.
This article describes these uses of microcomputer simulations for the context of human
service program evaluation. Simple mathematical models are described for the three most
commonly used human service outcome evaluation designs: the pretest-posttest random-
ized experiment, the pretest-posttest nonequivalent groups design; and the regression-
discontinuity design. The models are translated into a single microcomputer program that
can be used to conduct the simulations. Examples of the use of this program on an IBM
PC microcomputer are provided to illustrate the three uses of the simulations described.
The article concludes by arguing that simulations need to utilize experimental design
principles when rigorous, definitive results are desired, but that simulations may have
great potential value as an exploratory or teaching tool in human service research.
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Imagine the teacher faced with the difficulties of explaining
evaluation design to a class of students. The teacher has no
problem in conveying the importance of defining the evaluation
question, understanding the political context of the study, or involving
different stakeholder groups in the research process. But when faced
with the more formidable “technical” side of the evaluation process—
the construction of measures, the choice of a sampling plan, the selection
of a research design, and the analysis of the data— the class becomes lost
in the complexities of the material. How can the teacher convey the logic
behind an analysis of covariance or a pretest-posttest nonequivalent
group design in a way that is understandable to the students?
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Or, imagine the program evaluator who is in the process of
supervising a program evaluation. A number of problems, partially or
entirely unanticipated, are beginning to arise. The evaluator is not sure
whether all program participants are attending the program or even
whether the program is being carried out in a similar way for all
participants. Several of the measures for a small subgroup have been
lost and the evaluator is having a hard time getting comparison group
persons to come back to the agency for posttest measurement. In fact,
the evaluator is not even very confident that the program and com-
parison groups were really comparable to begin with. How can this
evaluator examine what the likely effects of some of these problems
might be on the final results? ‘

Or, consider the evaluation methodologist who has been exploring a
new statistical approach to analyzing a particular program evaluation
design. The statistical theory is fairly well developed but requires a
number of assumptions about the data—bivariate normal distributions,
equivalence of program and comparison group, equal reliability of
pretest and posttest measures, and so on. The methodologist is satisfied
with the theoretical formulation but is concerned about what might
happen if some of the assumptions are not reasonable in practice. How
can the methodologist explore the consequences of violating key
assumptions and the potential of statistical techniques that attempt to
adjust for such problems?

Microcomputer simulation is a tool that can help the teacher,
evaluator, and methodologist address these types of questions. In a
simulation, the analyst first creates data according to a known model
and then examines how well the model can be detected through data
analysis. The teacher can show students that measurement, sampling,
design, and analysis issues are dependent on the model that is assessed.
Students can directly manipulate the simulation model and try things
out to see immediately how results change and how analyses are
affected. The evaluator can construct models of evaluation problems—
making assumptions about the extent or kind of attrition, group
nonequivalence, or program implementation—and see whether the
results of any data analyses are seriously distorted. The methodologist
can systematically violate assumptions of statistical procedures and
immediately assess the degree to which the estimates of program effect
are biased. ’

Simulations are better for some purposes than is the analysis of real
data. With real data, the analyst never perfectly knows the real-world
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processes that caused the particular measured values to occur. In a simu-
lation, the analyst controls all of the factors making up the data and can
manipulate these systematically to see directly how specific problems
and assumptions affect the analysis. Simulations also have some
advantages over abstract theorizing about research issues. They enable
the analyst to come into direct contact with the assumptions that are
made and to develop a concrete “feel” for their implications on different
analysis techniques. .

Simulations have been widely used in contemporary social research
(Guetzkow, 1962; Bradley, 1977; Heckman, 1981). They have been used
in program evaluation contexts, but to a much lesser degree (Mande-
ville, 1978; Raffeld et al., 1979; Mandell and Blair, 1980). Most of this
work has been confined to the more technical literatures in these fields.

Although the simulations described here can certainly be accom-
plished on mainframe or minicomputers, this article will illustrate their
use in microcomputer environments. There are several reasons for
preferring microcomputer contexts for simulations. Clearly, the major
advantage is the lower costs of running the simulations. Once you have
purchased the microcomputer and necessary software there are virtually
no additional costs for running as many simulations as are desired. As it
is often advantageous to have a large number of runs of any simulation
problem, the costs in mainframe computer time can become prohibitive.
A second advantage of microcomputers is their portability and accessi-
bility. One can easily move a microcomputer from home to office to
classroom or into an agency either to conduct the simulations or to
illustrate their use. Students increasingly arrive at colleges and univer-
sities with microcomputers that enable them to conduct simulations on
their own. Mainframe accessibility, on the other hand, is dependent on
dedicated computer facilities or communication devices (such as
terminals, modems, or phone lines). There are disadvantages to using
microcomputers for computer simulation—slower computing speeds,
restrictions on problem size, lower precision in arithmetic operations—
but for the program evaluation contexts described here these are often
outweighed by the microcomputer advantages of lower cost and greater
portability and accessibility.

This article explains and illustrates some basic principles of micro-
computer simulation and shows how they may be used to improve the
work of teachers, evalutors, and methodologists. The discussion will
focus on a specific type of simulation context—the program or outcome
evaluation. In program evaluations the goal is to assess the effect or
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impact of some program on the participants. Typically, two groups are
studied. One group (the program group) receives the program while the
other does not (the comparison group). Measurements of both groups
are gathered before and after the program. The effect of the program is
determined by looking at whether the program group gains more than
the comparison group from pretest to posttest. This article will describe
how to simulate the three most commonly used program evaluation
designs: the randomized experiment, the pretest-posttest nonequivalent
group design, and the regression-discontinuity design. Despite the
specific context that this work emphasizes, the simulation principles
discussed here can be generalized to other research settings including
correlational or survey designs. '

The remainder of this article will describe the construction of
simulation models for the three designs, present a single microcomputer
program for simulating all of them, and discuss the applications of such
a program for teaching, evaluation implementation, and statistical
methodology.

THE SIMULATION MODELS

This work discusses the use of microcomputer simulations for
investigating the three most common program evaluation designs used
in applied social research. All three designs, in their simplest forms,
involve pre- and postprogram measurement of both program and
comparison group participants. The three designs differ in the way in
which persons are assigned to participate in the program. In the
randomized experimental (RE) design, persons are randomly assigned
to either the program or comparison group. In the regression-disconti-
nuity (RD) design (Trochim, 1984), all persons who score on one side of
a chosen preprogram measure cutoff value are assigned to one group,
with the remaining persons being assigned to the other. In the
nonequivalent group design (NEGD) (Cook and Campbell, 1979;
Reichardt, 1979), persons or intact groups (classes, wards, jails) are
“arbitrarily” assigned to either the program or comparison condition.
These designs have been used extensively in program evaluations where
one is interested in determining whether the program had an effect on
one or more outcome measures. The technical literature on these designs
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is extensive (see, for instance, Cook and Campbell, 1979; Trochim, 1986)
and a discussion of their relative advantages is outside the scope of this
article. The general wisdom is that if one is interested in establishing a
causal relationship (for example, in internal validity), RE designs are
most preferred, the RD design (because of its clear assignment-by-cutoff
rule) is next in order of preference, and the NEGD is least preferable.
All three of the program evaluation designs (RE, RD, and NEGD)
have a similar structure, which can be described using the notation

0O X O
o 0

where the Os indicate measures and the X indicates that a program is
administered. Each line represents a different group; the first line depicts
the program participants whereas the second shows the comparison
group. The passage of time is indicated by movement from left to right
on a line. Thus, the program group is given a preprogram measure
(indicated by the first O), is then given the program (X), and afterward is
given the postprogram measure (the last O). The vertical similarity in the
measurement structure implies that both the pre- and postmeasures are
given to both groups at the same time. Model-building considerations
will be discussed separately for each design.

THE RE MODEL

We can begin by constructing the preprogram measure for this
design. We make the initial assumption that the preprogram measure,
X, is the additive function of two components—a true score, t, and a
random error factor e, such that

X=t+ex

Foreach case (or hypothetical person) we randomly generate both t and
ex and add these to produce the pretest. Next, a variable, z, which
describes group membership (that is, program or comparison group) is
constructed such that

z=1i1fr<0
= 0 otherwise
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where

z is a (0,1) dummy-coded assignment variable
ris a random variable that is distributed ~ N(0, ¢°) and is inde-
pendent of all other terms

To accomplish this, we simply generate for each case a new random
variable, r, which is normally distributed with a mean equal to 0 and
standard deviation equal to some value o. The the case is assigned to
program (z = 1) or comparison (z = 0) group according to the above-
described rule. Finally, we construct the postprogram measure, y, such
that for each case

y=t+e,+(g2)
where

y is the postprogram measure

t is the same true score defined above

e, ~ N(0,0°) and is unrelated to t, e, or r
g is the program effect size

z is group membership as defined

For each case, the postmeasure is an additive composite of the same true
ability (t) as for the premeasure, an independent error (ey) and an effect
size (gz). It is important to note that the effect (g) is only added to
program group cases because, for comparison group cases z = 0 and the
product gz therefore also equals 0.

THE NEGD MODEL

In the nonequivalent group design we assign persons or units to
conditions nonrandomly. As aresult, we expect that the two groups may
differ systematically in ability as reflected in the preprogram measures.
If, for instance, two classrooms or hospital units are arbitrarily assigned
to receive the program or not, it is plausible to assume that the two
groups will, on average, differ on both the pre- and postmeasures, even
in the absence of the program. In simulations, we can deliberately create
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such nonequivalence by adding some constant value to both the pre-and
postmeasures for one of the groups. Therefore, in this design, before we
can construct the measures, we first need to create the group assignment
variable, z, in the same way as for the RE design:

z=1ifr=0
= 0 otherwise
where ris defined as before. Once this is accomplished, we can create the
preprogram measure, X, such that for each case

X=t+e;+(dz)

where t is a true score and e, is a random error factor., Here,d is a
constant that is added to the program group (note that it can be either
positive or negative depending upon whether one wishes the program
group to be “advantaged” or “disadvantaged™relative to the comparison
cases) through multiplication with the (0,1) dummy-coded group assign-
ment variable. The postmeasure, y, is constructed for each case, such
that

y=t+es +(dz)+(gz)
St+e, +z(d+g)

where

y is the postprogram measure

t is the same true score as used to construct x

ey ~ N(0,67)

d is the constant representing group nonequivalence as used to
construct x

g is the program effect size

z is the (0, 1) group membership indicator

THE RD MODEL

The model for the RD design can be constructed by beginning with
the premeasure, x, such that for each case



616 EVALUATION REVIEW / October 1986

XTt+e

where the preprogram measure X is the additive function of a true score,
t, and arandom error factor, ex. Next, the group membership variable, z,
can be constructed for each case such that

z= 1 if x =< (cutoff value)
= 0 otherwise

There are two important points to note. First, one must select a cutoff
value on the premeasure. Second, the RD design requires that either low
or high scorers be assigned to the program group depending on the
nature of the evaluation. If the program involves special training in
mathematics that should be given to needy students and the premeasure
is an indicator of prior math ability (where low scores indicate poor
math performance), then all students scoring below some premeasure
cutoff value would be given the program (as in the previous formula,
which would be appropriate for this compensatory situation). However,
if the program involves a novel surgical technique that should be piloted
only on the most needy cases and the premeasure is an indicator of the
severity of illness (where high scores indicate the greatest need), persons
with premeasure scores above some value would be assigned to the
program and the formula above would need to be adjusted accordingly.

Finally, the post-program measure, y, is constructed for each case
such that

y=t+es+(gz)

which is an identical formula to the one used for the RE design, but
differs significantly in the definition of z, the group membership
indicator.

SUMMARY OF MODEL-BUILDING PROCEDURES

All three designs have the same structure in that for each a
preprogram, postprogram, and treatment (dummy variable) measure is
created. However, the models presented show that the designs differ
considerably in how these three terms are constructed. The major
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difference is the assignment variable, z. In the next section the models
will be translated into a single computer program that will be used for
simulations. A single integrated program is used so that for any problem
the three designs can be directly compared.

THE SIMULATION PROGRAM

The models for the three designs can be easily simulated with a single
program. This is illustrated with a program written in the MINITAB
statistical computing system (Ryan et al., 1982)! shown in the Appendix.
The first section of the program involves the specification of six con-
straints (K1-K6) that define the parameters for the simulation. By
changing the values of these constraints, one can alter the size of the
program effect, the degree of nonequivalence (in the NEGD), the relia-
bility of the measures, and the sample size. The random variables that are
needed for all three models (t, e, e,, and r) are generated in four “nran”
statements. The next few sections on the listing describe the construction
of the x, y, and z variables for the three models. Note that in the sample
program a premeasure cutoff value of 0 was chosen for the RD design.
Table 1 lists the MINITAB variables and variable names that corre-
spond to the pretest (x), group assignment (z), and posttest (y) for the
three models. ’

For each model, the program then prints out the group means and
standard deviations. Next, bivariate plots are constructed for each
model (on output, the letter A indicates a program case; the letter Z
indicates a comparison one; a number indicates the number of cases that
fall on the same point; and, an asterisk indicates that more than nine
cases fall on the same spot). All three designs are analyzed using the
same ANCOVA regression model:

Yi=bo+ bix) + bazi + ¢
where
yi = posttest score for case i

bo = constant or intercept parameter
b: = linear slope of y on x parameter
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TABLE 1
Index of MINITAB Variables and Variable Names
for the RE, NEGD, and RD Models

Variable and Name

RE NEGD RD
Pretest (x) C5 C10 Cs
x-RE-RD* x-NE x-RE-RD
Group (z) Cé6 Cé C8
z-RE-NE z-RE-NE z-RD
Posttest (y) Cc7 Clt C9
y-RE y-NE y-RD

*This is the x variable for both the randomized experiment and regression discon-
tinuity designs.

X; = pretest score for case i

b: = program effect parameter
z; = group assignment for case i
ei = residual for case 1

In each analysis, the three estimated parameters, bo, by, and b, are saved
and the key estimate, b,—the estimate of the program effect—is stored
in a new variable. In this way, the results are cumulated over successive
runs of the simulation.

The program can be executed interactively by typing each command
as presented in the Appendix (note that commands beginning with # are
comments and need not be typed). Alternatively, the program can be
stored in a standard system file and executed n times using the
MINITA B command

execute ‘filename’ n

All examples presented here were run on an IBM PC/XT micro-
computer equipped with an 8087 math coprocessor chip.

1}

SIMULATION VARIATIONS AND APPLICATIONS

There are a number of ways in which the simulations described here
(and simple variations of the program provided previously) can be
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useful in program evaluation contexts. First, they provide a powerful
teaching tool (Eamon, 1980; Lehman, 1980). Students of program
evaluation can explore the relative advantages of these designs under a
wide variety of conditions. In addition, the simulations show the student
exactly how an analysis of these designs could be accomplished using
real data. Second, the simulations provide a way to examine the possible
effects of evaluation implementation problems on estimates of program
effect (Mandeville, 1978; Raffeld et al., 1979; Trochim, 1984). Just as
NASA explores difficulties in a space shuttle flight using an on-ground
shuttle simulator, the data analyst can examine the possible effects of
attrition rates, floor or ceiling measurement patterns, and other
implementation factors. Finally, simulations make it possible to
examine the potential of new data analysis techniques. When bias is
detected in traditional analysis and analytic solutions are forthcoming,
simulations can be a useful adjunct to statistical theory.

APPLICATIONS FOR TEACHING

To illustrate the utility of the simulation program for teaching, two
sets of simulations were run. In the first, the program effect for all
models was 5 points, the NEGD program group had a 3-point “advan-
tage” (that is, was nonequivalent on pre- and postmeasures for the
NEGD), the premeasure cutoff value was zero for the RD design, the
reliability of the measures was equal to .9 (see further on), and there were
100 cases in each of the 50 runs. In the second, all simulation parameters
remained the same except that the reliability of the measures was.5,
considerably lower than before. The reliability of the measures was set
by varying the relative size of the standard deviations of the true and
error scores. Reliability is defined as

var(t)
var(t) + var(e)

Therefore, if we set K3 in the program (standard deviation of the true
scores) equal to 3 and K4 (standard deviation of the error scores) equal
to 1, we obtain the reliability

32

rel = ————
32412
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for the first “high reliability” simulations. In the second “low reliability”
simulations, we set K3 = 3 and K4 = 3 and thereby obtain

rel =

for the reliability of the measures.

The cumulative results for 50 runs for these two simulations are
shown in Table 2.

The results illustrate some important methodological principles.
First, both the RE and RD designs yield unbiased estimates. In general,
we would consider estimates to be unbiased if the average gain does not
differ positively or negatively by more than two standard error units
from the true gain (that is, a .05 significance level where the gain, g, falls
within the interval b, + 2SE.;). For instance, for the RE design, low
reliability simulations, the average gain is 4.89 and the standard error
is .081. Therefore, the true gain, 5 points, falls within the interval
4.89 + 2(.081) and the RE design can be considered unbiased for these
conditions. Second, the NEGD is shown to yield biased estimates of
effect for both low- and high-reliability simulations. This is consistent
with the literature on this design (Reichardt, 1979) which maintains that
the ANCOVA analysis will yield biased estimates of effect when the
pretest is not perfectly measured (that is, there is measurement error on
the pretest). Finally, the results show that the designs differ in efficiency.
For both the high- and low-reliability simulations the RE and NEGD
have similar standard errors of the average gain, whereas the RD design
standard errors are considerably larger. This also is consistent with the
literature. Goldberger (1972), for instance, demonstrated that, all things
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TABLE 2
Simulation Results for the Basic Program
(true gain = 5.0, 50 runs, n = 100 per run)

b, SE (b, ) min (b,) max (b, )
High reliability (.9) RE 4.973 .041 4.251 5.578
NEGD 5.252* .044 4.448 5.884
RD 5.032 .066 3.702 . 5.951
Low reliability (.5) RE 4890 .081 3.663 6.401
NEGD 6.344* .094 4.521 7.930
RD 5.030 .180 2.280 7.870

*Significance of coefficient is determined by its value falling outside of the range of
2 standard errors (b, & 28Ep;).

being equal, the RD design requires 2.75 times the number of cases of an
RE design in order to have the same relative efficiency.

How can simulations of this type be useful for teaching about
program evaluations? First, students can observe the simulation
program in progress and get an idea of how a real data analysis might
unfold. In addition, the simulation presents the same information in a
number of ways. The student can come to a better understanding of the
relationships between within-group pretest and posttest means and
standard deviations, bivariate plots of pre- and postmeasures that also
depict group membership, and the results of the ANCOVA regression
analyses. Second, the simulations clearly demonstrate the probabilistic
foundations of hypothesis testing in this context. For instance, the
results shown in Table 2 illustrate that even with measures that are fairly
reliable, one will sometimes obtain estimates of effect that are near the
true value (even when the analysis yields biased results on average, as
with the NEGD) or estimates that differ considerably from the true
value (even when the analysis yields unbiased estimates on average). To
demonstrate these notions even more directly, the student can display
for each design the histograms of the estimates of effect across a number
of simulations runs. Third, the simulations illustrate clearly some of the
key assumptions that are made in these designs and allow the student to
examine what would happen if these assumptions are violated. For
instance, the simulations are based on the assumption that within-group
pre-post slopes are linear and that the slopes are equal between groups.
The effects of allowing the true models to have treatment interaction
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terms or nonlinear relationships can be examined directly with small
modifications to the simulation program as Trochim (1984) illustrated
for the RD design. Fourth, the simulations demonstrate the importance
of reliable measurement. By varying the ratio of true score and error
term variances, the student can directly manipulate reliability and show
that estimates of effect become less efficient as measures become less
reliable. Finally, simulations are an excellent way to illustrate that
apparently sensible analytic procedures can yield biased estimates under
certain conditions. This is shown most clearly in the simulations
reported in Table 2 for the NEGD. Although the apparent similarity
between the design structures of the RE and NEGD might suggest that
traditional ANCOVA regression models are appropriate, the simu-
lations clearly show this to be false and thereby confirm the statistical
literature in this area (Reichardt, 1979).

APPLICATIONS FOR THE STUDY
OF DESIGN IMPLEMENTATION

The validity of estimates from the three designs described here
depends on how well they are executed or implemented in the field.
There are many implementation problems occurring in typical human
service program evaluations—attrition problems, data coding errors,
floor and ceiling effects on measures, poor program implementation,
and so on—that degrade the theoretical quality of these designs
(Trochim, 1984). Clearly, there is a need for improved evaluation quality
control (Trochim and Visco, 1985), but when implementation problems
cannot be contained, it is important for the analyst to examine the
potential effects of such problems on estimates of program gains. This
application of simulations is analogous to simulation studies that
NASA conducts to try to determine the effects of problems in the
functioning of the space shuttle or acommunications satellite. There, an
exact duplicate of the shuttle or satellite is used to try to recreate the
problem and explore potential solutions. In a similar way, the program
evaluator can attempt to recreate attrition patterns or measurement
difficulties to examine their effects on the analysis and discover analytic
corrections that may be appropriate. This is illustrated for two
implementation problems. In the first, a simple attrition pattern is
constructed; the second examines the problem of posttest ceiling effects.
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In order to model attrition patterns we need to make assumptions
about what causes attrition in the context at hand. Here, we will make a
rather simple assumption for purposes of illustration: that persons (or
cases) who are low in in true ability on pre- and postmeasures are the
most likely attrition cases. This might be the case in educational contexts
where it may be the lowest ability students who are lacking motivation
or are erratic in attendance and therefore are excluded from the data
analysis for want of either a pre- or postprogram score. Similarly, in
health or mental health contexts it may be the most needy or the most
severely ill who contribute most to the attrition rate. We can operation-
alize this attrition assumption in a somewhat crude way by excluding all
cases in the simulation that have true scores lower than some chosen
value. In these simulations, the attrition model was accomplished with
the addition of the following program statement immediately after the
random generation of the true scores:

recode -100-1.5 C1 ‘¥’ Cl

This command recodes all values between —100 and -1.5 as missing and
puts them in column 1 (c1). (It essentially assigns the MINITA Bmissing
value code to all cases having a true score lower than —1.5 and these cases
are subsequently removed from the analysis.) As in the previous
example, all three models were simulated for both low and high
reliability measurement. The average estimates of effect, standard
errors, and minimum and maximum estimates are shown in Table 3.

The results suggest several lessons. Asin the previous simulation, the
RE design appears to yield unbiased estimates for both high- and low-
reliability conditions. Although the attrition pattern is systematic with
respect to true ability (and is therefore correlated with both the pre- and
postmeasures) it is random with respect to the assignment variable, 1.
The NEGD clearly yields biased estimates, and these are even more
biased than in the previous nonattrition simulations. The RD design is
clearly biased under the high-reliability model and is marginally biased
for the low-reliability condition. This suggests that a greater number of
simulation runs (or a larger n for each run) might indicate that the RD
design yields biased estimates under this attrition model.

The second example of the use of simulations for investigating imple-
mentation problems involves the construction of a ceiling effect on
the postprogram measures for all three designs. A ceiling effect occurs
when a measure is unable to discriminate between the ability levels of
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TABLE 3
Simulation Results for the Attrition Model
(true gain = 5.0, 50 runs, n = 100 per run before attrition)

b, SE (b,) min(by) max (b,
High reliability (.09) RE 5.074 052 4.400 5.873
NEGD 5.608* 058 4.713 6.610
RD 5.202* 074 3.902 6.654
Low reliability (5) ~ RE 4.899 130 2.819 7.057
NEGD 6.888* 125 4.636 8.821

RD 5.310* .180 2.990 7.970

*See note, Table 2.

persons who do well on the test. When a test is too easy, for instance,
many respondents may achieve perfect scores. The scores cannot be
considered accurate indicators of their relative ability because if the test
were harder, some respondents would outscore others at this upper
level. The problem is especially troubling when it occurs on a
postprogram measure that is presumed to reflect program-related gains.
Instead, potential gains will be masked by the test’s inability to allow
higher posttest scores.

A simple model for constructing a posttest ceiling effect was
constructed in these simulations by forcing all program cases having a
6.5 or greater on the posttest to be given the posttest ceiling value of 6.5
instead.2 This is easily accomplished by inserting the following three
statements immediately before naming the variables in the program:

reco 65 100 C7 6.5 C7
reco 6.5 100 C9 6.5 C9
reco 6.5 100 Cl11 6.5 Cl1

In MINITAB, the recode command can also be stated as reco. The
average estimates of effect, standard errors, and minimum and maxi-
mum estimates for both the high- and low-reliability conditions are
shown in Table 4 for the three designs.

In this example, all three models yield biased estimates of effect for
both high- and low-reliability conditions. In all cases but one, the bias is
in the direction of underestimating the true effect. This is not surprising
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TABLE 4
Simulation Results for Posttest Ceiling Effect
(true gain = 5.0, 50 runs, n = 100 per run)

b, SE (b,) min (b, ) max (b, )
High reliability (.9) RE 4.242* .036 3.692 4.959
NEGD 3911* .041 3.465 - 4.635
RD 5.218* .068 4.014, 5.987
Low reliability (.5) RE 3.801* .084 2.477 5.310
NEGD 4.267* .083 3.056 5.686
RD 4.050* 150 0.950 6.310

*See note, Table 2.

given that there was a posttest ceiling that prevented larger gains from
occurring. In the only exception, the RD design under the high
reliability condition, the effect is overestimated due to the nature of the
regression model that is used. A more detailed consideration of this
result is outside the scope of this article and the reader is referred to
Trochim (1984) for a more extensive discussion of the RD design and
the analytic problems that can lead to this pattern of results.

The attrition and posttest ceiling examples illustrate the use of
simulations to examine common research implementation problems.
The analyst can directly manipulate the models of the problems in order
to approximate their reality more accurately and to examine the
performance of a design under more varied situations. Such simulations
are useful in that they can alert the analyst to potential bias and even
indicate the direction of bias under various assumptions.

APPLICATIONS FOR THE
INVESTIGATION OF NEW ANALYSES

One of the most exciting uses of simulation involves the examination
of the accuracy and viability of “new” statistical techniques that are
designed to address the deficiencies of previous models. There are two
reasons why simulations are particularly valuable here. First, the
conditions that the new analysis addresses may not be easily amenable
to mathematical proof that the analysis will yield unbiased estimates.
Second, simulations allow the analyst to examine the performance of
the analysis under degraded conditions or conditions that do not
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perfectly match the mathematical ideal. Thus, simulations can act as a
proving ground for new analyses that supplement and extend what is
possible through mathematical argument alone.

This application of simulations can be illustrated well by returning to
the initial simulations reported in Table 2, where it was shown that the
NEGD yields biased estimates of program effect. This bias is well known
in the methodological literature (Reichardt, 1979) and results from
unreliability (measurement error) in the preprogram measure under
conditions of nonspecifiable group nonequivalence. One suggestion for
addressing this problem analytically is to conduct what is usually called
areliability-corrected Analysis of Covariance to adjust for pretest unre-
liability in the NEGD. The analysis involves correcting the pretest scores
separately for each group using the following formula:

Xadj = i + rxx(Xi - -i)
where

X,q; = the adjusted or reliability corrected pretest
X = the within-group pretest mean

X; = pretest score for case i

I, = an estimate of pretest reliability

The analyst must use an estimate of reliability and there is considerable
discussion in the literature (Reichardt, 1979; Campbell and Boruch,
1975) about the assumptions underlying various estimates (for example,
test-retest or internal consistency). The reader is referred to this
literature for more detailed consideration of this issue. The choice of
reliability estimate is simplified in simulations because the analyst
knows the true reliability (as discussed earlier). In constructing the
microcomputer simulation, the analyst needs to separate the program
and comparison group pretest scores when applying the correction
formula.? This adjusted pretest is then used in place of the unadjusted
pretest for the NEGD simulations.

To illustrate the correction, simulations were conducted under the
same conditions as for Table 1 but with the reliability-corrected
ANCOVA analysis also included. The resuits are presented in Table 5
for the three designs and the corrected NEGD analysis. The same
pattern of results as in Table 1 occurs with the RE and RD designs
yielding unbiased estimates (although RD is less efficient) and the
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TABLE §
Simulation Results for Reliability-Corrected ANCOVA Analysis
(true gain = 5.0, 50 runs, n = 100 per run)

b, SE (b,) min (b, ) max (b, )
High reliability (.9) RE 5.013 .040 4.496 5.709
NEGD 5.332% .047 4.706 5.969
RD 5.117 .066 4,178 6.208
NEGD 5.050 .048 4.410 5.632
(reliability
corrected)
Low reliability (.(5) RE 5.064 .109 3.387 6.756
NEGD 6.567* 114 4,926 8.227
RD 5.020 170 2.810 8.570
NEGD 4.970 .150 2.560 7.000
(reliability
corrected)

*See note, Table 2.

NEGD evidencing biased estimates for both low- and high-reliability
conditions. Here, however, the reliability-corrected NEGD analysis
clearly yields unbiased estimates, thus lending support to the idea that
this correction procedure is appropriate, at least for the conditions of
these simulations.

Simulations have been used to explore and examine the accuracy of a
wide range of statistical analyses for program evaluation including
models for adjusting for selection biases in NEGD (Trochim and
Spiegelman, 1980; Muthen and Joreskog, 1984); for correcting for
misassignment with respect to the cutoff in RD designs (Campbell
et al., 1979; Trochim, 1984), and for assessing the effects of attrition in
evaluations (Trochim, 1982).

DISCUSSION

This article describes several simple simulation models that are
appropriate for a few, relatively confined situations, namely, the use of
three common research designs for evaluating program effects. Neverthe-
less, the logic of these simulations is easily extended to other relevant
research contexts. For instance, many agencies routinely conduct
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sample surveys to identify needs and target populations, assess services
that are provided, and compare agency functioning with the perfor-
mance of other similar agencies or with some standard. One would
construct simulation models for survey instruments for the same
reasons that they are constructed for evaluation designs—to improve
teaching and general understanding, to explore problems in imple-
menting the survey (such as nonresponse patterns), or to examine the
probable effect of various analytic strategies. The key to doing this would
again rest on the statistical model used to generate hypothetical survey
responses. A “true score” measurement model is useful, at least for
simple simulations, but may have to be modified. For instance, assume
that one question on a survey deals with client satisfaction with a
particular service and that the response is a 7-point Likert-type format
where 1 = very dissatisfied, 7 = very satisfied, and 4 = neutral. The
analyst could make the assumption that for some sample or subsample
the true average response is a scale value equal to 5 points (somewhat
satisfied), and that the true distribution of responses is normal around
this value, with some standard deviation. At some point, the analyst will
have to convert this hypothetical underlying continuous true distribu-
tion to the 7-point integer response format either by rounding or by
generating normally distributed random integers in the first place. Such
a variable could then be correlated or cross-tabulated with other
generated responses to explore analytic strategies for that survey.
Similar extensions of the models discussed here can be made for
simulations of routinely collected management information system
(MIS) information, for data for correlational studies, or for time-series
situations, among others.

Simulations are assumptive in nature and vary in quality to the
degree that the reality is correctly modeled. When constructing a
simulation, it is important that the analyst seek out empirical evidence
to support the assumptions that are made whenever this is feasible. For
instance, it should be clear that the simulations described here could be
greatly enhanced if we had more specific data on how much and what
type of attrition typically occurs, what type of floor or ceiling effects are
common, what patterns of misassignment relative to the cutoff value
typically arise for the RD design, what the typical test-retest reliabilities
(for use in reliability-corrected ANCOVA) might be, and so on.
Although some relevant data will be available in the methodological
literature, all of these issues are context specific and demand that the
analyst know the setting in some detail if the simulations are to be
reasonable.
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One way to approach the assumptive nature of the simulation task is
to recognize that reality conditions or constraints in the models need to
be examined systematically across a range of plausible conditions. This
implies that multiple analyses under systematically varied conditions
that are based upon principles of parametric experimental design are
needed in state-of-the-art simulation work. This point is made well by
Heiberger et al. (1983: 585):

L

The computer has become a source of experimental data for modern statisticians
much as the farm field was to the developers of experimental design. However,
many “field” experiments have largely ignored fundamental principles of experi-
mental design by failing to identify factors clearly and to control them indepen-
dently. When some aspects of test problems were varied, others usually changed as
well—often in unpredictable ways. Other computer-based experiments have been
ad hoc collections of anecdotal results at sample points selected with little or no
design.

Heiberger et al. (1983) go on to describe a general model for simulation
design that allows the analyst to control systematically a large number
of relevant parameters across some multidimensional reality space,
including the sample size, number of endogenous and exogenous
variables, number of “key points” or condition values, matrix eigen-
values and eigenvectors, intercorrelations, least squares regression
coefficients, means, standard errors, and so on.

Although rigorous, experimentally based simulations are essential
for definitive analysis of complex problems, they will not always be
feasible or even desirable for many program evaluation contexts.
Instead, it is important to recognize that simulations are a generally
useful tool that can be used to conduct more definitive statistical studies
but, more realistically for program evaluation, provide the analyst with
the means to explore and probe simple relevant data structures for
purposes of improving teaching about research, examing research
implementation problems and pilot testing analytic approaches for
problematic data.
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APPENDIX
MINITAB Program to Simulate Three Program Evaluation Designs

s+ MINITAB Program to simulate a simple pretest-pcsttest

] randomized experiment (RE), noneguivalent group (NE) design,
# and regression-discontinuity (RD) design.

%

# Define simulation parameters

3

let k1=5 % k1 is the gain or program eflfect

let k2=3 # k2 is the selection bias for the NEGD

let k3=0 # k3 is the mean of the true scores

let k4=3 # k4 is the standard deviation of the true scores let

kS=1 & k5 is the standard deviaticn of the error terms let
kK6=100 # k6 is the number of cases desired

2 .
# Set MINITAB environment parameters

#

batch

noprint

brief

#

# Generate random variables needed

#

nran k6 k3 k4 ¢l # generate true score
nran k6 0 kS c2 # generate pretest error
nran k6 0 k5 c3 # generate posttest error
nran k6 0 k5 c4 # generate assignment error.
#

% Construct pretest for RE and RD

#

let c5=cl+c2 # pretest score

#

# Construct z and y for RE

%

reco -100 0 c4 -1 c6

reco 0 100 c6 O cé6

reco -1 c6 1 cé

let c7=cl + (Kkl*c6) + c3

#

# Construct z and y for RD

8

reco -100 0 c5 -1 c8

reco 0 100 c8 0 ¢8

reco -1 c8 1 c8

let c9=cl + (kl=*c8) + c3

#

Computer Simulations...
# Construct x and y for NEGD

%

let clO=cl + €2 = (X2*C6)

let cll=cl -~ <3 - ((X1-K2)*Ch;
#

# Name the variakles

%

(continued)
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APPENDIX Continued

name cl='trye' c2='x-error' c3='y-error' cs='a-error?
name cS5='x-RE-RD' C6='z~-RE-NE' c7='y-RE! c8='z-RD"'
name c9='y-Rrp! Cl0='x-NE"' cll='y-NE'

¥

# Group statistics for randomized experiment

#

table c6;

stats c5 ¢7.

# .

# Group statistics for nonequivalent group design

#

table cs;

stats cl0 c11.

#

# Group statistics for regression—discontinuity design
' ‘

table csg,

stats c5 c11.

#

# Bivariate plot for randomized experiment
M

lplot c7 c5 cs

#

# Bivariate plot for nonequivalent group design
#

lplot c¢l11 c10 cs

#

# Bivariate plot for regression—disc0utinuity design
#

lplot ¢9 c5 cs

%

% Regression analysis for randomized experiment
z

regr €7 2 c5 c6 c20 c21 c22
pPick 3 3 22 23

join 23 ¢31 e31

-3

# Regression analysis for nonequivalent group design

F

Teégr cll 2 cl0 c6 c20 c2l c22

pick 3 3 c22 c23

join €23 ¢32 c32

]

# Regression analysis for regression—discontinuity design

Computer Simulatiors...

2

regr c9 2 ¢S5 c8 cz0 c21 c22

pick 3 3 c22 c23

join ¢23 ¢33 ¢33

* Name results variables and display aggregate results
2

rname c3l='REresult’ C32='NEresul+%' €33='RDresult’

desc €31 c32 ¢33
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NOTES T

state

1. Most commonly available statistical packages could be used. Analogous program
listings for SPSS* and SAS are available upon request from the first author. The
MINITAB version is presented here because that language is widely available on micros,
minicomputers, and mainframes, is relatively inexpensive, and is easy to learn.

2. In order to make the posttest ceiling conditions similar across the three designs it
was necessary to alter the assignment procedure for the RD design so that the program
group consisted of cases scoring above the cutoff value rather than below it. This is
accomplished by replacing the three statements used to create the RD assignment

measure, c8, with the following: ’ BRA
reco -100 ¢5 -1 c8 CA;
reco 0 100 c8 1 c8
reco -1 c8 0 c8 z
Thus, all cases having a pretest greater than or equal to zero are in the program and all I};
remaining cases are in the comparison group. This variation might arise in practice if the CAMN
program is given to “advantaged” persons (for example, a scholarship or award) or if the .
premeasure is an indicator of need where high scores indicate greater need. The ceiling e
effect of 6.5 is arbitrary, but here it is used for purpose of illustration. m
3. Several statements are needed in MINITAB to accomplish the correction. coo
Immediately before naming the variables, the following statements should be inserted: E A;\:
choose 0 ¢6 c10 c11 c40 c41 c42 re
let c43 = (mean(cd1)) + (9%(c4l - mean(c41))) GOL
choose I ¢6 c10 c11 c44 c45 c46 ' . f
let c47 = (mean(c45)) + (.9* (c45-mean(cd5))) 0‘
join cd0 cd4 ¢35 ' GUE
join c43 c47 c36 H
join c42 c46 c37 : HEC
name ¢35 = 'NEw-z"¢36 = 'NEw-x"¢37 = 'NEw-y’ cs
erase c40—c47 3

The first “choose” statement selects the x, y, and z values for all comparison cases. The HESI
“let” statement computes the reliability correction for the comparison cases using the )
value of .9 for the estimate of reliability (that is, the high reliability simulations). The next Of_

. w i : LEH
two statements perform the same function for the program cases. The three “join B
statements rejoin the program and comparison group values into single columns forx,y, M Al\'
and z. The variables are then named and unneeded work variables are erased. :

If desired, the analyst can obtain group statistics and a bivariate plot for this design 7 ;y
following the format used for the other designs. To obtain the reliability-corrected M Aﬁ
ANCOV A regression analysis, insert the following statements immediately after the RD
regression analysis: rAc‘

MUT

regr ¢37 2 ¢36 ¢35 ¢20 c21 ¢22 : t
pick 3 3 ¢22 ¢23 ;'
join ¢23 ¢34 cc34 ‘

e i
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The cumulative results can be named and displayed by removing the last “desc”
statement and substituting:

name ¢34 = 'NErelcor’
desc c31-c34
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