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ABSTRACT: The randomized clinical trial (RCT) is the preferred method for assessing the
efficacy of treatments. Recent ethical and logistical criticisms suggest that new vari-
ations of the traditional RCT are needed. Some of these criticisms may be addressed
with new hybrid designs that combine random assignment with assignment by one
or more cutoff values on a baseline variable (e.g., severity of illness). In a simple
version of such a “cutoff-based” RTC, persons scoring below a cutoff score on a baseline
measure (i.e., the least severely ill) are automatically assigned to the control-treated
group, those scoring above a second, higher cutoff (i.e., the most ill) are automatically
assigned to the test-treated group, and those scoring in the interval between the cutoff
scores (i.e., the moderately ill) are randomly assigned to either group. Depending on
the baseline score, the patient is assigned to treatment either randomly or by the need-
based, clinically related baseline score. Six cutoff-based design variations are studied
via simulations and compared with the traditional RCT and the single-cutoff (i.e.,
regression-discontinuity) design. All variations yield unbiased estimates of the treat.
ment effect but estimates differ in efficiency, with the RCT being most efficient and
the single-cutoff design being least efficient. Secondary analyses of data from the
Cross-National Collaborative Study of the Effects of Alprazolam (Xanax) on panic are
conducted for each variation by selectively discarding cases from the original dataset
to simulate cutoff-based assignment. The results confirm the simulations and illustrate
how cutoff-based designs might look with real data.

CUTOFF ASSIGNMENT STRATEGIES FOR ENHANCING
RANDOMIZED CLINICAL TRIALS (RCTs)

Randomized clinical trials (RCTs) are consistently recognized as the pre-
ferred. method for assessing the effects of treatments [1,2). Miké [1, p. 132]
states that “statisticians stand firmly for the principles of randomization and
the randomized clinical trial” and that “among clinical investigators there is
a much broader scope of response, although the majority strongly support
the need for randomization.” Green [3, p- 192] cites three major advantages
of randomized trials: “(1) bias in assigning treatments is avoided, whether
the bias be conscious or unconscious—and much of it is unconscious; (2)
prognostic factors, both known and unknown, tend to be balanced across
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treatment groups; and (3) randomization guarantees validity of statistical tests
of significance used to compare treatments.” In a typical RCT, persons who
have met screening criteria are randomly assigned to either the test treatment
under investigation or to a control-treated group. Usually, some baseline
measurement is gathered and, following treatment, outcome measures are
recorded. Random assignment assures initially probabilistically equivalent
groups, enabling outcome differences to be attributed to treatment rather
than other factors {3, pp. 190,192].

In recent years, criticisms of RCTs have been raised, most related to the
ethics and timing of clinical trials. Critics argue that RCTs often take too long
to complete—patients may be denied a potentially beneficial treatment while
awaiting RCT results. Recent controversies regarding the ethics of imple-
menting RCTs in extracorporeal membrane oxygenation (ECMO) in neonatal
intensive care, AIDS, and cancer [4-6] focus on the long time span typically
required to complete the study. Miké states: “National debates concerning
RCTs—when to terminate the trial and make treatments available for non-
research patients—are prominent also in other major areas, including life-
threatening diseases such as AIDS and cancer” (4, p. 154]. Critics (7,8] also
question the ethics of RCTs that were conducted even though the test treat-
ment was already thought to be effective. RCT proponents argue that a treat-
ment cannot be considered effective with any reasonable degree of scientific
credibility until an RCT is conducted {9). Philosophers have also questioned
the ethics of RCTs. Marquis states that “randomized clinical trials as presently
conducted are unethical” [10]. At least one entire journal issue has been
devoted to examining ethical issues in clinical trials from a philosophical
perspective (11]. Miké defends the RCT, arguing that many of the ethical
concerns of philosophers rest on misunderstandings of the statistical princi-
ples of randomization and significance testing [12]. Ethical concerns have also
been raised by clinicians [1]. Ethical and timing issues in clinical trials include
when to stop an ongoing trial; how to deal with diseases that progress slowly
or treatments that require long time periods; and how to accumulate sufficient
sample sizes for diseases that occur infrequently. Issues like these have led
to a number of enhancements to the traditional RCT including methods to
increase rates of subject recruitment, reduce the time required to complete
trials by use of multiple sites, combine phases of traditional multiphase strat-
egies, and develop models for stopping an RCT early once a clear trend in
efficacy has been established [9]. Still, there appears to be a consensus that
RCT methodology needs to be developed further to better address some of
these concerns [13].

This article describes a strategy for augmenting traditional RCTs using
cutoff values on baseline variables in conjunction with random assignment.
Throughout this article, designs that use baseline cutoff values for treatment
assignment are termed cutoff-based designs, and any such designs that also use
randomized assignment across part of the baseline range are labeled cutoff-
based RCTs. The RCT must remain the method of choice when efficacy ques-
tions are investigated. But when some of the concerns described above exist,
cutoff-based RCTs may have advantages over the traditional RCT. This article
presents the rationale for cutoff-based RCTs, computer simulations of several
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important variations, and illustrative secondary analyses showing how dif-
ferent cutoff-based variations work on data from an actual RCT study.

REVIEW OF CUTOFF-BASED ASSIGNMENT

Cutoff assignment strategies can be traced to Campbell’s work [14,15] on
the “regression-discontinuity” (RD) design, a single-cutoff quasi-experimen-
tal design that involves no random assignment. The RD design got its name
from the “jump” or discontinuity at the cutoff in the regression line of
baseline and follow-up scores that occurs when there is a treatment effect.
The design deliberately creates treatment groups that are “nonequivalent”
on baseline measures. But this nonequivalence should not be confused with
what arises in uncontrolled (e.g., historical) studies because in the RD de-
sign the cause of the nonequivalence is known (the cutoff assignment rule)
and can be adjusted for in the analysis. The design does assume an equiv-
alence between groups in the null case—an equivalence of baseline-outcome
functional form, not of baseline level. The null case expectation is that there
are no discontinuities in the baseline—outcome relationship that coincide with
the cutoff placement.

A hypothetical RD design is shown in Figures 1la and b based on simu-
lated data with the cutoff at a baseline score of 50. Figure la shows the
null case—the bivariate distribution expected if the test treatment doesn’t
work (or is never administered). The solid line through the distribution is
the linear regression of the outcome measure onto the baseline measure.
Figure 1b shows a hypothetical treatment effect of 5 scale units; the out-
come scores of the treatment group (those scoring above the cutoff) are
lowered by an average of 5 points from where they would be in the null
case. The dashed line shows the expected regression function in the nuil
case, while the solid lines show the observed regression for the case of a
5-point treatment effect.

The single-cutoff design has many variations [16,17]. Baseline and out-
come measures may be the same or different, the cutoff can be placed any-
where along the baseline measure (as long as there are sufficient numbers
in the control-treated group), positive-negative directionality can be in either
direction for either variable (e.g., in the figures, a “positive” treatment ef-
fect is evidenced in a lowering of outcome values relative to the null case
expectation), and the outcome measure can be dichotomous or continuous
(a logistic regression analysis would be performed on a binary outcome
measure).

During the 1960s and 1970s investigations of this single-cutoff RD design
[18-25] demonstrated that it yielded unbiased estimates of the treatment effect
and explored alternative statistical analyses for several special cases. The
design was used extensively in the mid-1970s to evaluate compensatory ed-
ucation programs [26,27] and methodologists began to address common im-
plementation difficulties {16,26]. There have been few uses of the RD design
outside of education, most notably in criminal justice {28,29] and the evalu-
ation of the NIH Career Development Awards [30]. Trochim [16] synthesized
the work on the RD design, describing major design variations, analytical
options, and implementation issues.
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Figure 1a A simulated regression-discontinuity cutoff design with no treatment ef-
fect.
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Figure 1b A simulated regression—discontinuity cutoff design with a 5-point treat-
ment effect.

Coupling cutoff and randomized assignment is an RD variation discussed
in Campbell’s early expositions [31]. Boruch [2] described a simple one-interval
and a more complex multi-interval cutoff-based RCT. Boruch describes two
studies [32,33] that illustrate the feasibility of implementing cutoff-based as-
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signment in medical research—in both studies, persons were assigned to
conditions based on whether they were critically ill, marginaily ill (random
assignment of these cases), or negligibly ill. Rubin [24,25] shows that the
treatment effect estimate is unbiased for both the single-cutoff RD design and
the cutoff-based RCT variation provided the correct baseline—outcome func-
tional form is specified. Cappelleri [34] examines the theoretical and empirical
properties of cutoff-based designs, with and without randomization, in the
context of controlled clinical trials.

Recently, cutoff-based designs have received more attention from medical
researchers. Trochim [17] presents an overview of potential applications of
cutoff designs in health settings. Fineberg [35] describes the single-cutoff
design as “an intriguing method for unbiased assignment . . . well worth
further theoretical and empirical work,” Mosteller [36] suggests that “the
method needs to be tried out more,” and Luft [37] describes it as a “worthy
addition to the set of tools available to the health services researcher.” Williams
[38] has a more mixed reaction, pointing out that the single-cutoff design
should not be considered a replacement for randomized experiments and that
there may be serious losses in statistical efficiency when moving from an RCT
to an RD strategy. Robbins and Zhang [39] provide statistical arguments that
under certain assumptions one can obtain an unbiased estimate of the su-
periority of a drug to a placebo when all and only those patients at risk are
treated with the drug, essentially the single-cutoff RD design. Cutoff designs
have not been utilized in health or medical research settings, although there
is at least one example of a single-interval cutoff-based RCT currently un-
derway to study the relative efficacy of inpatient vs outpatient treatments for
cocaine dependency [40].

The statistical analysis of cutoff-based RCTs depends on the same set of
assumptions used for multiple-regression models in general, with the same
set of remedial measures for violations in the assumptions. To model the
baseline—outcome relationship correctly, Rubin [24] recommends using strong
a priori information, Boruch [2] a “dry run” approach, Trochim [16,17] a
polynomial regression approach, and Mohr [41] recommends using double-
baseline measures. Undoubtedly, the best alternative is to combine cutoff
assignment with as much randomization as possible.

Cutoff-based designs have not been without critics (see Refs. 16 and 42 for
detailed discussions). Williams {38] questioned the applicability of the RD
design that did not use any random assignment. He suggests that the design,
rather than improving the ethical situation, may actuaily be less ethical than
an RCT that requires smaller samples:

More patients will have to be included in an RD design than in a randomized
clinical trial. If the drug is eventually found safe and effective, more patients
will have been denied optimal care in an RD design than in a randomized clinical
trial. If the drug is found to have unacceptable side effects for the level of
effectiveness, more patients will have been exposed to the risk of side effects
in an RD design than in a randomized clinical trial. Either way, more patients
will be given the wrong therapy in an RD design than in a randomized clinical
trial. (p. 148)

Williams's point is that after the study more people will have been assigned
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to the less effective treatment in an RD design than in an RCT. Williams’s
arithmetic is technically correct—because more persons are needed in both
treatments in a cutoff-based design than in a traditional RCT, there have to
be more people receiving the ultimately less efficacious (i.e., “wrong” in his
terms) treatment, whichever that is. But Williams's critique doesn’t consider
which patients are subject to the “wrong” treatment under different possible
outcomes—some are, by the nature of the level of their illness, in greater
need of treatment and more willing to assume potential risks—a point that
clinicians and patients often try to bring home to statisticians and metho-
dologists. Cutoff designs explicitly take this clinical and ethical reality into
account in a way that does not lead to biased estimates of treatment effect.
Furthermore, cutoff designs, when coupled with random assignment, offer
the potential of at least some of the benefits of both.

Other critics [43] claimed that random measurement error on the baseline
variable biases estimates of the (main) treatment effect in the RD cutoff design.
They state, “Even if we know perfectly the selection process and explicitly
and correctly incorporate it into our evaluation model, we can still expect bias
because, as a practical matter, the independent variables are aiways observed
imperfectly” (p. 177). Their argument is incorrect, and they subsequently
retracted it [44]. Assignment in cutoff-based designs is by observed baseline
score, not by underlying construct (whatever that may be), and it is perfect
knowledge of the assignment rule that enables an unbiased treatment effect
estimate in both RD and cutoff-based RCTs, even in the presence of random
measurement error. Logical, statistical, and simulation evidence [21,24,45-
48] shows that RD and cutoff-based RCTs behave just like RCTs when there
is measurement error in the covariates.

Cutoff-based RCTs constitute a middle ground between cutoff-based de-
signs that use no random assignment (i.e., RD) and the traditional RCT that
uses no cutoffs in assignment. Like all cutoff-based designs (including those
with no random assignment) they allow a treatment to be given to those
most in need or most willing to assume risk. At the same time they capi-
talize in part on the greater statistical efficiency of the traditional (no-cut-
off) RCT. The major benefit is the ability to assign patients based on objec-
tive, clinically relevant factors. The major negative trade-off is that cutoff-
based RCTs always require larger samples than a traditional RCT. Cappel-
leri [34] discusses statistical power and efficiency for a variety of cutoff-based
designs, with and without some randomization, and gives sample size es-
timation procedures.

Cutoff-based designs have several potential advantages in addition to
ethical ones. For instance, Luft [37] suggested that (nonrandom) RD
designs, although less statistically powerful, may enable larger sample
sizes:

Thus, a well designed RCT often considers for randomization only those people
in the midrange of some pretreatment {baseline] criteria, such as patients clas-
sified as mild hypertensives rather than normotensives or those with high blood
pressure. This narrow focus may necessitate a longer period to accrue enough
subjects or require complex multicenter collaborations. Furthermore, the narrow
range of subjects makes it difficult to determine covariates that may enhance or



196 W.M.K. Trochim and J.C. Cappelleri

reduce the treatment effect. The RD approach, in contrast, allows the inclusion
of a much broader range of subjects, possibly counteracting the reduced power
of the design compared with the RCT with a lower cost per subject. Much more
work is needed to examine the costs of achieving equally credible results using
alternative designs under various situations. (p. 141)

In most RCTs, even after eligible patients have been selected, there are
dropouts after enroliment. If attrition is related to the treatment, bias is likely
to result. Even small percentages of treatment-related dropouts can degrade
the initial equivalence between groups and lead to biased estimates of treat-
ment effect. In theory, RCTs may be expected to have greater treatment-
related attrition because the treatment is not assigned on clinically sensible
grounds. Patients who are less sick may be more likely to drop out due to
deleterious side effects of the new treatment. Cutoff-based designs may re-
duce this dropout rate because treatments are assigned based on clinically
related need. Analyses by “intent to treat” can help eliminate some of this
bias only if outcome information can be obtained on the dropouts. Even so,
intent-to-treat analyses are inherently conservative and yield estimates that
are lower in statistical efficiency, thus reducing some of the etficiency advan-
tage of the traditional RCT. In a similar vein, when an illness is extreme or
prior treatments have failed, the sickest patients may be expected to seek the
new experimental treatment even when they are assigned to the control con-
dition. This appears to be happening in current RCTs of AZT treatment of
AIDS [49]. Green et al. [13] write about the need to speed up the completion
of the RCT because of the impatience of the subjects and the possibility that
physicians may remove severely ill patients from the control-treated group
of the trial in order to address their clinical needs. Cutoff-based RCTs may
help to alleviate some of this treatment switching without giving up random-
ization altogether.

Cutoff-based designs may also allow the RCT strategy to be extended into
earlier (i.e., phase II or phase I} clinical trial stages. Green et al. [13] point
out that in earlier phases it is common practice to use the sickest patients on
whom other treatments have failed. There is a need to investigate strategies
that allow increased sample sizes in phase I and Il trials. Cutoff-based designs
accomplish this with greater validity than do nonrandomized alternatives.
Similarly, combining phases may speed up completion of trials. A cutoff-
based RCT may be a more feasible phase II-11I combination than the traditional
RCT approach alone.

SIMULATIONS OF CUTOFF-BASED RCT S
Simulation Models

Simulations are conducted for six cutoff-based RCT variations that might
be useful in medical and health research settings. Simulations are also con-
ducted of the traditional RCT and the single-cutoff RD designs to compare
them with the cutoff-based RCT variations. The simulations are not meant to
suggest that these are the only or even the best ways to implement cutoff-
based RCTs. Instead, they show potentially useful alternatives that illustrate
some of the key principles of combining these design features in medical
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research contexts. The reader may extrapolate from these designs to others
of relevance.

All of the simulation models share some important properties and limi-
tations. They are all of pretest-posttest designs, i.e., the same variable is
assumed to be measured before and after treatment. They are also all two-
group test treatment vs control treatment designs. In the six cutoff-based RCT
models 25% of all cases are randomly assigned, the overall probability of
random assignment to treatment is 50%, and the overail rate of assignment
to treatment (i.e., across both randomized and cutoff-based groups) is also
50%. Mulitiple-site or multiple-stage designs assume that there are no site or
time effects. Only linear first-order relations are modeled and no interaction
effects are constructed. In all simulations, a simple true score model is as-
sumed. Let the subscript i denote the ith observation. In each simulation, a
true baseline score (T) value for each case is generated such that:

T,-~NID(p.=50,02=9)

where NID represents normally and independently distributed. Then, sep-
arate error measures are created for the observed baseline (x;) and outcome
(y;) measures such that:

ex~NID (n = 0, ¢* = 1)
e, ~NID (n = 0, ¢* = 1)

In accordance with the simple true score model, the baseline variable actually
used for assignment is then constructed:

X =T + e,

The treatment group dummy-coded (0, 1) assignment variable z; is constructed
differently for each design as described below. Finally, the outcome measure
is constructed using the formula:

_'/.' = T,‘ + (-‘5)2,' + ey’,

Given these specifications, the mean for the baseline measure is 50 and the
standard deviation is 3.1625. The null case outcome measure would also have
this distribution. The reliability is 0.90 for the observed baseline measure (x,)
relative to the “true,” error-free baseline measure (T)):

var(T),)
var(T) + var(e,)

rel =

9
9+1

= 0.9

In the null case, the x; and yi variables are assumed to be continuous normal
measures of the severity of illness level, where higher scores indicate greater
illness. The simulations create a “positive” or efficacious outcome through a
5-point reduction of severity of illness for the treated cases. For each of the
eight models, five simulations are run for sample sizes of 100, 200, 300, 400,
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and 500 cases (i.e., patients). Each simulation setup is run 1000 times. Thus
there are 8 (models) x 5 (sample sizes) x 1000 runs = 40,000 separate
simulation runs in the study.

Table 1 shows cutoff values for each model in both z-score and baseline
score units. For designs with multiple cutoff intervais the total percentage of
cases falling within each interval is given; the percentage of cases assigned
to treatment is shown in the last column. If the line in the table describes an
interval (i.e., a cutoff range is specified), the last column shows the percentage
of cases within the interval assigned to treatment. For RCT and RD designs
the percentage shown is across all cases. Descriptions and simulation speci-
fications for each of the eight models are as follows.

Model 1: The Randomized Clinical Trial (RCT). This model is a traditional RCT
with 50/50 probability of being assigned to either group. The assignment
variable z, is constructed by generating a normal variable a; such that

a; ~ NID (0, 1)

and then dichotomizing this variable at the mean of zero:

Table 1 Cutoff Specifications, Expected Percentage of Cases Within Intervals, and
Expected Percentage of Cases (Within Interval) Assigned to Treatment for
the Eight Simulation Models

% in % in
Model Z-Score Cutoff(s) Baseline Cutoff(s) Interval Treatment
1. The randomized — — — 50
clinical trial (RCT)
2. Single-cutoff 0 50 — 50
regression—

discontinuity (RD)

3. Single-cutoff interval —0.318 to +0.318 48.99440 to 51.00560 25 50

4. Different proportions —0.318 to +0.318 48.99440 to 51.00560 5 25

in the —0.318 to +0.318 48.99440 to 51.00560 5 33

randomization —0.318 to +0.318 48.99440 to 51.00560 5 50

interval —0.318 to +0.318 48.99440 to 51.00560 5 66

—0.318 to +0.318 48.99440 to 51.00560 5 75

5. Increasing probability —0.318 to —0.189 48.99440 to 49.40233 5 25

of random —0.189 to —0.062 49.40233 to 49.80394 5 33

assignment —0.062 to +0.062 49.80394 to 50.19606 5 50

+0.062 to +0.189 50.19606 to 51.59767 5 66

+0.189 to +0.318 50.59767 to 51.00560 5 75

6. Different interval —0.419 to +0.419 48.67501 to 51.32499 32.5 50

widths —0.351 to +0.351 48.89004 to 51.10996 27.5 50

~0.285 to +0.285 49.09875 to 50.90125 2.5 50

-0.221 to +0.221 49.30114 to 50.69886 17.5 50

7. Different interval —1.688 to —0.688 44.66208 to 47.82435 20 50

centers —1.228 to —0.228 46.11672 to 49.27900 30 50

+0.228 to +1.228 46.11672 to 49.27900 30 50

+0.688 to +1.688 52.17565 to 55.33792 20 50

8. Single cutoff with a 0.318 51.0056 —_ 50

“model check” —1.462 to —0.462 45.37675 to 48.53903 25 50
randomization

interval
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Z; lifa, >0

= ( otherwise

where a value of 1 indicates assignment to the treatment group and 0 indicates
assignment to the placebo-treated group.

Model 2: The Regression-Discontinuity Design (RD). This model assumes that
there is a single cutoff at the mean of the normally distributed baseline variable
that is used for assignment. Since the baseline measure has a mean of 50, the
assignment variable is constructed so that:

11fx,>50
=01fx,<50

That is, patients with a severity of illness score of 50 or greater are assigned
to the new treatment; those with less than 50 are assigned to the placebo-
treated group.

i

Z;

Model 3: Single-Cutoff Interval. Both of the prior models are likely to meet with
some resistance in clinical settings. The random assignment in model 1 may
be rejected where it is seen as denying a potentially efficacious treatment to
needy patients. Physicians may disagree with the cutoff assignment of “close
call” patients in model 2. This design is a simple cutoff-based RCT compromise
that combines cutoff and random assignment. In model 3, two cutoff values,
arranged symmetrically around the baseline mean, define the randomization
interval. All cases scoring above that interval on the baseline measure are
assigned to the new treatment, while those below the interval are assigned
to the control-treated condition. The design is shown in Figure 2a.

Model 4: Different Proportions in the Randomization Interval. The cutoff interval
in model 3 can be constructed so that a specific percentage of all persons will
be assigned to each treatment (e.g., 50/50), but there is no guarantee that the
assumptions of the cutoff choices will hold up over time. If the average
baseline illness levels get higher or lower, disproportionately more persons
may be assigned to one treatment than the other. For hospitals, this can lead
to cost inefficiencies and census problems—at times there may be too many
eligible cases or empty beds. In an RCT, once the probability of assignment
is set, the only thing that affects the number of cases in each group is the
overall rate at which eligible patients come into the system, but the propor-
tions in each group will approximate the probability of assignment. Cutoff-
based designs are thus more likely to lead to unexpected disproportionate
numbers in treatment groups. One way to address this problem for model 3
is to alter the probabilities of random assignment during the course of the
trial. If there are too few test treatment cases during a specified time period,
the random assignment proportions can be altered for the next period to
increase the ratio of test-treated to control-treated patients, e.g., from a 50/
50 ratio to a 66/33 ratio. Changing the probabilities of assignment for the
randomized cases should not lead to bias but may decrease efficiency of
estimates of treatment effect. Model 4 (identical in cutoff structure to model
3) examines this adaptive random assignment probability scenario. A second
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application of model 4 occurs when there are multiple test sites, each with
its own census needs. Some hospitals may have more beds or treatment
facilities available. To maximize efficient use of resources, a different proba-
bility of within-interval random assignment to treatment may be used at each
site. The simulations test a broad range of within-interval assignment prob-
abilities—five different proportions of random assignment to treatment (25,
33, 50, 66, and 75%). This is likely to exceed any realistic range of probabilities.
For the single-site adjustments over time scenario, this simulates an annual
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adjustment to the assignment proportion over the course of a S-year project.
For the multisite scenario, this illustrates the case of five sites, each having
a different probability of random assignment. This model has the same two
cutoffs as model 3, but within this interval, cases are randomly divided into
five subgroups each with different probabilities or percentages of random
assignment to treatment (namely, 25, 33, 50, 66, and 75%).

Model 5: Increasing Probability of Random Assignment. When cutoffs are used,
physicians and patients may be concerned that “close call” cases are incor-
rectly assigned. Model 3 attempts to address this by introducing a random-
ization interval, but even so, concerns may be raised about the abrupt change
in probability of assignment that occurs at the interval cutoff boundaries.
These sharp jumps can be reduced by having a more gradually changing
probability of assignment within the randomization interval. Model 5 is iden-
tical to model 3 except that the interval is subdivided into five adjacent sub-
intervals with gradually increasing probabilities of assignment across them.
Treatment is given to all those who are most severely ill (above the interval),
with probability of assignment to treatment declining as severity of illness
declines, reaching a probability of zero for those patients below the random-
ization interval. This model is shown in Figure 2b.

Model 6: Different Interval Widths (at Different Sites or Times). Random assign-
ment to treatment is used for scientific purposes, not necessarily because it
is clinically sensible. Over the course of a clinical trial, it may be possible and
desirable to alter the proportion of randomly assigned cases if preliminary
results indicate that the treatment appears to be efficacious. As evidence for
the efficacy of the new treatment increases, the width of the interval might
periodically be reduced to allow more sick patients to receive the apparently
more efficacious treatment. In the extreme, this variation moves from a tra-
ditional RCT to a single-cutoff RD by periodically reducing the range of ran-
dom assignment. In model 6 (shown in Figure 2c) four different random
assignment interval widths are used. The study might begin with the widest
interval and reduce the width after periodic assessment. Model 6 also de-
scribes a multisite study where different width random assignment intervals
are negotiated at each site. Some sites, for instance, might readily accept the
legitimacy of random assignment across all or much of the baseline measure
range, while others may be more reluctant. Because each of the four random-
ization intervals in model 6 have different widths, they include different
percentages of the total number of cases.

Model 7: Different Interval Centers (at Different Sites or Times). Another way to
adjust the proportions assigned to each treatment is to move the random
assignment interval up or down on the baseline measure at different times
in the study or to place the intervals at different baseline measure locations
for different sites. Model 7 (shown in Figure 2d) uses four random assignment
intervals placed at different points along the baseline continuum. This might
be used if there are muitiple treatment sites that have different admission
rates and/or numbers of treatment slots. For instance, one facility may have
more surgeons who can perform a novel treatment and thus might be able
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to have a higher proportion of cases assigned to that condition. Each site
could have a different randomization interval location to allow a site-specific
sample size that better meets their administrative needs. In the single-site
variation, this design might help when the availability of resources or patient
demand for treatment changes over time or the numbers of eligible patients
presenting is subject to fluctuation. Model 7 takes the mean (or median)
baseline value of 50, which is the average of the four interval centers, as the
point at which the main effect is estimated.

Model 8: Single Cutoff with a “Model Check” Randomization Interval. This design
is the single-cutoff RD design with a randomization interval located at a
separate place from the cutoff value. Its major purpose is to provide empirical
verification for the assumed regression model—cases in the interval allow us
to verify regression line extrapolations from cutoff-based groups. In other
randomization interval designs, such as models 3 through 7, it is legitimate
to be concerned with whether the projection of the placebo-treated patient
group line into the region of the treated group is an accurate reflection of its
null case expectation. The cutoff interval in model 8 makes it possible to
“check” or verify that the regression line projections from the single-cutoff
design have some empirical basis. In these simulations the interval is in the
placebo-treated group range, although placing the interval in the treatment
group range would not change the conclusions. This model, shown in Figure
2e, is the only true asymmetrical model of the eight. The treatment effect is
estimated at the median of the randomization interval, which is 46.95.

There are many other promising cutoff-based RCT variations that warrant
investigation in future studies. Patients above a cutoff on severity of iliness
could be randomly assigned to the test treatment with all cases below the
cutoff placed in the placebo-treated group. This below-cutoff group might
consist of persons whose symptoms are not severe enough to be included in
the traditional RCT, but who could be included under a cutoff-based design
primarily to improve statistical power. This design could also be reversed,
with all persons above a cutoff automatically receiving the treatment and all
those below randomly assigned. Or, there could be an RCT interval in the
center of a baseline distribution with all persons both above and below this
interval assigned to the treatment. Only a relatively small subsample of the
population would be denied the treatment in this variation. Or, cutoff strat-
egies could be used in a staged or adaptive design. In the initial stage, all
persons would be randomly assigned to treatment. If preliminary results
indicate that the test treatment may be efficacious, a cutoff could be used to
assign all new cases above the cutoff to the test treatment, while those below
would be randomly assigned. As long as each intermediate analysis continues
to point in the direction of efficacy, the cutoff value above which new persons
would all be assigned to the test treatment can continue to be lowered. The
study begins as a traditional RCT, moves in the intermediate stages to a cutoff-
based RCT, and ultimately administers the test treatment to all eligible par-
ticipants (full clinical adoption). Each of these variations has merit and should
be studied further for their statistical and methodological properties and their
ability to address situation-specific ethical and logistical concerns.
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Statistical Analysis Model

All simulation models are analyzed using the same ANCOVA-based sta-
tistical model. Given the baseline measure x; and outcome measure y;, the
general model used can be stated as follows:

vi = Bo + Puti + Bz + e
where:
%, = baseline measure for individual i minus the value m (i.e., X, = x, — m)
where
formodel1m = 0
for models 2, 3, 4, 5, 6, and 7, m = 50 (the median of the baseline scor

for model 8, m = 46.95 (the median of the randomization interval)

i

y; = outcome measure for individual i

z, = treatment group variable (1 if test-treated participant;
0 if control-treated participant)

Bo = intercept estimator
B, = linear slope estimator
B, = treatment effect estimator

e; = sample regression disturbance term

The major null hypothesis of interest

Hp: B, =0 (i.e., the treatment effect parameter is zero)
is tested against the alternative hypothesis that

Hi: B, #0

The only difference in the analysis applied to each model is in the %; term.
The value m is subtracted from the baseline measure in order to control the
point at which the treatment effect estimate is made. In the single-cutoff RD
design, for instance, the cutoff value is subtracted from each baseline score.
This sets the cutoff equal to % = 0, i.e., it equates the cutoff and intercept.
Since the key coefficient of interest B, is estimated at the intercept, after the
transformation, it is actually being estimated at the cutoff point. In fact, this
is technically not necessary in these simulations since there is no interaction
effect. The transformation is included here primarily because with real data—
where they may be interaction effects or nonlinearities—it is important to be
careful about where the main treatment effect is estimated [46]. The reader
is encouraged to consult the technical literature {16,17,34] for more details
‘regarding statistical models for cutoff-based designs.

Simulation Results

_ The key resuits for all models are shown in Table 2. The table shows average
B values (i.e., treatment effect) and the average of their standard errors (SEs),
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Table 2 Average Gain (B2) and Average SE (in parentheses) for Each
Model for Five Different Sample Sizes (Each Average Based on N
= 1000 Simulation Runs)

N
Model 100 200 300 400 500
1. The randomized clinical ~4.9904 -5.0031 -—4.9985 -—4.9985 -5.0015
trial (RCT) (0.2783) (0.1949) (0.1591) (0.1382) (0.1236)
2. Single-cutoff regression- —5.0227 -5.0145 -4.9914 -5.0064 -5.0042
discontinuity (RD) (0.4616) (0.3246) (0.2643) (0.2292) (0.2045)
3. Single-cutoff interval -4.9916 -4.9992 -4.9879 -4.9951 -5.0028

(0.4273) (0.3012) (0.2446) (0.2117) (0.1900)
4. Different proportions in -4.9854 -4.9835 -5.0029 -5.0016 —4.988

the randomization (0.4280) (0.3006) (0.2449) (0.2122) (0.1893)
interval

5. Increasing probability of  -4.9922 -4.9971 -5.0122 -4.9917 -4.9857
random assignment (0.4433) (0.3092) (0.2532) (0.2185) (0.1958)

6. Different interval widths  -5.0149 -4.9987 -5.0053 -4.9931 -5.0018
(0.4264) (0.2995) (0.2444) (0.2113) (0.1887)

7. Different interval centers —~4.9949 -4.9998 -5.002 -5.0025 -4.9933
(0.3186) (0.2248) (0.1834) (0.1587) (0.1419)

8. Single cutoff with a —5.0082 —4.9957 -4.9922 -4.9995 -—4.9961

“model check” (0.3302) (0.2323) (0.1891) (0.1642) (0.1462)
randomization interval

each average based on 1000 simulation runs. All models yield unbiased es-
timates of the true treatment effect of —5 outcome score units. The major
difference is in efficiency and statistical power. Of course, as sample sizes are
increased, SEs are reduced. But more interesting is the relative SE level across
designs shown for the eight models in Figure 3. The single-cutoff RD and the
traditional (fully randomized) RCT provide the upper and lower SE bound-
aries as expected. The designs cluster into three groups in terms of efficiency.
The single-cutoff RD, the three designs having the same overall interval width
(i.e., models 3, 4, and 5), and the design with varied interval widths (model
6) are comparably low in efficiency (i.e., higher SEs). The designs that have
randomization across a wider baseline score range—by varying the interval
center (model 7) or by placing the interval apart from a single cutoff (model
8)—are comparable to each other and have greater efficiency than the previous
set even though the same percentage of the total cases is randomly assigned.
Finally, the traditional RCT stands alone as the most efficient. There seems
to be some efficiency gain when randomization intervals span a wider baseline
score range, even when the same percentage of all cases is randomly assigned.
Cappelleri [34] discusses power analysis and sample size estimation for cutoff-
based designs with and without some randomization.

ILLUSTRATIVE SECONDARY ANALYSES

Although no cutoff-based RCTs have been implemented in medical re-
search contexts, it is possible to use existing RCT data to construct such
designs post hoc to examine how they perform in estimating treatment effects
on real data. To do this, cutoff values are arbitrarily selected in previously
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Figure 3 Average standard errors of treatment effect for eight models across five
sample sizes.

conducted RCTs and used to discard data to simulate a cutoff-based design
structure.

Data from the Cross-National Collaborative Study [50-54] of the Effect of
Alprazolam (Xanax) on panic is used to illustrate the cutoff-based models
described earlier. This was a two-phase, multinational, muiticenter RCT to
evaluate the drug treatment of panic disorder and associated agoraphobia. It
is not the purpose of this reanalysis to assess efficacy across the range of
possible outcome measures or even to develop a definitive substantive test
of the efficacy hypothesis for these data. The major purpose of these analyses
is to see how well treatment effect estimates from cutoff-based RCTs (created
from the original data) compare with the traditional RCT (which uses data
from the entire sample) in terms of bias and efficiency.

The reanalysis reported here is limited to the baseline and first study week.
Only one of the many measures in the original study was used here—the
Sheehan Clinician Rated Anxiety Scale (CRAS) [55], which consists of average
clinician’s ratings of 35 items (e.g., “spells of imbalance,” “tires easily,” “ten-
sion/nervousness/anxjety”) rated on a 0 (Absent) to 4 (Very Severe) scale. All
cutoff placements are done in z-score units and are designed to be comparable
to the cutoff placements in the simulations. Cutoff specifications for the eight
models are given in Table 3.

RESULTS OF ILLUSTRATIVE SECONDARY ANALYSES

The original baseline-outcome distribution for the CRAS variable is shown
in Figure 4. Visual inspection of the figure indicates a likely positive treatment
effect, i.e., a reduction in the average CRAS score for the Xanax patients relative
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Table 3 Cutoff Specifications, Expected Percentage of Cases Within Intervals, and
Expected Percentage of Cases (Within Interval) Assigned to Treatment for
the Xanax Reanalysis

% in % in
Model Z-Score Cutoff(s) Baseline Cutoff(s) Interval Treatment
1. The randomized — — — 50
clinical trial (RCT)
2. Single-cutoff 0 1.233 — 50
regression—
discontinuity (RD)
Single-cutoff interval  -0.318 to +0.318 1.069 to 1.397 25 50
Different proportions —0.318 to +0.318 1.069 to 1.397 5 25
in the randomization -0.318 to +0.318 1.069 to 1.397 5 33
interval —-0.318 to +0.318 1.069 to 1.397 5 50
-0.318 to +0.318 1.069 to 1.397 5 66
-0.318 to +0.318 1.069 to 1.397 5 75
5. Increasing probability -0.318 to —0.189  1.06885 to 1.13547 5 25
of random -0.189 to -0.062 1.13547 to 1.20106 5 33
assignment -0.062 to +0.062 1.20106 to 1.26510 5 50
+0.062 to +0.189  1.26510 to 1.33069 5 66
+0.189 to +0.318  1.33069 to 1.39732 5 75
6. Different interval -0.419 to +0.419 1.01669 to 1.44948 32.5 50
widths -0.351 to +0.351 1.05181 to 1.41436 27.5 50
—0.285 to +0.285 1.08589 to 1.38027 225 50
-0.221 to +0.221  1.11895 to 1.34722 17.5 50
7. Different interval —1.688 to —0.688 0.36131 to 0.87776 20 50
centers —-1.228 to —0.228 0.59888 to 1.11533 30 50
+0.228 to +1.228 1.35084 to 1.86730 30 50
+0.688 to +1.688 1.58841 to 2.10487 20 50
8. Single cutoff with a -0.318 1.06885 — 50
“model check” +0.462 to +1.462 1.47169 to 1.98815 25 50
randomization
interval

to placebo-treated patients. For all models, all cutoff values are based on a
baseline CRAS score with a mean of 1.233 and a standard deviation of 0.5165.
For instance, for the single-cutoff RD design, a cutoff is constructed at the
mean, i.e., at a z value of 0 or a CRAS vaiue of 1.233. All placebo-treated
cases falling above the mean and all Xanax-treated cases falling below the
mean are discarded, yielding the baseline~outcome distribution shown in
Figure 5. It is visually apparent that there is a “jump” or discontinuity in the
baseline-outcome distribution at the cutoff point that is indicative of a treat-
ment effect. The other models are created in an analogous manner.

The same ANCOVA regression model described for the simulations is
applied to all of the models. The scatter plot of the outcome-baseline CRAS
measure for all placebo-treated patients in the original RCT clearly depicts a
linear relationship. Linearity is confirmed by an F test for lack of fit and by
a residual analysis. Therefore, the specified ANCOVA model is deemed ap-
propriate for the cutoff-based models. The results are shown for the eight
models in Table 4. Resuits are given for two types of traditional RCTs. The
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Figure 5 Baseline-outcome distribution of Clinician Rated Anxiety Scale from the
Xanax Study using a single-cutoff RD design.

first uses the full-sample data from all patients who have both baseline and
outcome measurements. The second (model 1) uses only half of the sample
data (randomly discarding the other half), so that this RCT will have a sample
size comparable to the seven cutoff-based models. The treatment effect es-
timate for the full-sample RCT is —0.368, with a standard error of 0.037. The
major question of interest is how well the estimates from the eight models
approach this benchmark. For all models the estimated effect falls within one
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Table 4 Average Estimates of Treatment Efficacy ([32), Standard Errors,
and t Values for the Full-Sampie RCT and the Eight Models tor
the CRAS Variable from the Xanax Study

Model B2 SE(B2) t Value

The randomized clinical —0.368 0.037 -9.824
trial (RCT)—entire
sample

1. The randomized clinical -0.370 0.053 -6.935
trial (RCT)—random
subsampie

2. Single-cutoff -0.294 0.103 —-2.861
regression—
discontinuity (RD)

3. Single-cutoff interval -0.330 0.089 -3.714

4. Different propertions in -0.329 0.089 —-3.707
the randomization
interval

5. Increasing probability -0.360 0.086 -4.191
of random
assignment

6. Different interval -0.362 0.083 -4.362
widths

7. Different interval -0.359 0.062 —5.802
centers

8. Single cutoff with a -0.341 0.064 -5.293
“model check”
randomization
interval

standard error unit of the full-sample RCT model. As in the simulations, the
major differences across models are related to their relative efficiency—the
RCT design yields the most efficient estimate while the single-cutoff RD yields
the worst. In both simulations and real data analyses, models 7 and 8 yield
estimates nearly as efficient as the RCT design with about as many cases.
These cutoff-based RCTs appear not to lose much in efficiency and, conse-
quently, can use sample sizes nearly as small as the traditional RCT while
achieving comparable statistical power. However, these models may be more
difficult to implement or justify to nonspecialists than other cutoff-based RCTs
and the traditional RCT.

The reanalysis shows that if cutoff-based RCT designs (or a single-cutoff
RD design) had been used instead of the traditional RCT, unbiased and sta-
tistically significant estimates of treatment efficacy could have been obtained.

CONCLUSIONS

This study has some notable limitations. First, very little is known about
how cutoff-based designs work in real-world clinical trials. They may be more
difficult than the traditional RCT to communicate for informed consent, may
not be as readily accepted by patients and physicians, and may require more
data management effort from physicians and research staff. Second, the sim-
ulations did not include site or time effects. Work is currently underway to
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examine more complex models. Third, only a limited number of design vari-
ations were included. Field tests of cutoff-based RCTs in real-world medical
contexts are needed to examine these and other important implementation
issues.

Randomized clinical trials are the best designs for assessing the efficacy of
treatment. Cutoff-based RCT variations attempt to balance the need for sci-
entific rigor with the pressures to provide treatments based on clinical factors.
They include random assignment to treatment, but only for part of the en-
rolled population. They provide for assignment of patients to treatment based
on clinically established need, but only for some of those enrolled. Assuming
that the correct analytical model is applied, they yield unbiased estimates of
treatment efficacy. They have lower statistical efficiency and power than a
traditional RCT, but in some contexts they may better address the ethical
concerns of some patients and clinicians. Cutoff-based RCTs should only be
mounted after careful review of ethical issues. When there are strong ethical
concerns about denying a test treatment to those most in need or giving it to
those less in need, cutoff-based RCTs should be considered.
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