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Cutoff Designs*

I. INTRODUCTION

The randomized design is the preferred method for as-
sessing the efficacy of treatments. Randomization of all
subjects should be employed whenever possible. Ran-
domization, in principle, serves at least three important
purposes: (1) it avoids known and unknown biases on
average; (2) it helps convince others that the trial was
conducted properly; and (3) it is the basis for the sta-
tistical theory that underlies hypothesis tests and con-
fidence intervals (1).

Randomization of all subjects has been criticized,
however, because it may raise ethical concerns or prac-
tical limitations in certain situations. Ethical tensions
may arise, for example, when strong a priori (though
inconclusive) information favors the experimental
treatment, when the disease is potentially life-threat-
ening, and when randomization does not explicitly in-
corporate subjects’ baseline clinical need or their will-
ingness to incur risk (2,3). Examples that have stirred
considerable debate about the ethics of the randomized
design include the controversies about the release of
drugs for AIDS (4), the availability of drugs for cancer
treatment (5), and the use of extracorporeal membrane
oxygenation (ECMO) for neonatal intensive care (6,7).

A second potential drawback of the randomized de-
sign occurs in instances when randomization is not fea-
sible or practical. Such situations may arise in health
services or outcomes research, where, for example, a
health education program is to be targeted only to peo-
ple who need it (8). An evaluation and comparison be-
tween managed care and usual care could be made fea-

*This entry is drawn largely from JC Cappelleri. Embedding
the regression-discontinuity design within the randomized
design. Proceedings of the Biopharmaceutical Session of the
American Statistical Association, 1997. ©Joseph C. Cap-
pelleri.

sible if high users of health care utilization receive
managed care only and low users of health care utili-
zation receive usual care only. A study concerned with
the effect of a letter as an intervention to control health
care costs could be made practical if the letter is sent
only to physicians with high billed charges per sub-
scriber, while those with lower billed charges per sub-
scriber don’t receive a letter (9). In these contexts, ec-
onomic constraints and logistical barriers may dictate
that an experimental intervention is neither practical
nor efficient for those who don’t need it or who are not
the targeted candidates. Moreover, treatment allocation
that reflects actual practice allows for testing the effec-
tiveness of the intervention—its benefit in a real-life
setting, as opposed to its efficacy in a controlled
setting.

This entry discusses alternative design strategies that
are intended to address ethical or practical concerns
when it is deemed unethical or infeasible to randomize
all subjects to study interventions. These design strat-
egies are called cutoff designs, because they involve,
at least in part, the assignment of subjects to treatments
based on a cutoff score on a quantitative baseline var-
iable that measures clinical need, severity of illness, or
some other relevant measure. What follows is an over-
view of cutoff designs.

II. DESCRIPTION OF THE REGRESSION-
DISCONTINUITY DESIGN

The most basic of cutoff designs is the regression-dis-
continuity design (8,10-13), in which a baseline indi-
cator, for example, severity of illness, can be used to
assign subjects to an intervention. All subjects below a
cutoff point on the baseline indicator receive one treat-
ment, while all subjects above it receive another treat-
ment. The history of the regression-discontinuity (RD)
design is found in the social sciences, specifically in
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program evaluation. It has been employed to evaluate
the effects of compensatory education, being on the
dean’s list, a criminal justice program, a health edu-
cation program on serum cholesterol, accelerated math
training, and the NIH Career Development Award (14).
In these scenarios randomization of subjects was not a
viable alternative.

The traditional RD design is a single-cutoff quasi-
experimental design that involves no random assign-
ment. The RD design received its name from the
“jump,”” or discontinuity, at the cutoff in the regression
line of baseline and outcome (follow-up) scores that
occurs when there is a treatment effect. Figure 1 depicts
an RD design with a hypothetical 10-point treatment
effect (reduction). All subjects with scores above 20 on
the baseline assignment indicator are most in need of
the intervention and hence are automatically assigned
to the test (experimental) treatment, while those with
scores of 20 or less (those less in need) are automati-
cally assigned to the control treatment.

As Fig. 1 shows, the outcome scores of the test treat-
ment group (those scoring above the cutoff) are low-
ered by an average of 10 points from where they would
be expected in the absence of a treatment effect. The
solid lines show the predicted regression lines for a 10-
point effect, and the dashed lines show the expected
regression lines for patients in a treatment group if they
were given the other intervention instead.

The baseline assignment covariate should be mea-
sured on at least an ordinal scale; it is more desirable,
though, to have a continuous (ratio-level or interval-
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Fig. 1 Regression-discontinuity design with a 10-point
treatment effect.
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level) baseline assignment variable. Baseline and out-
come may be the same or different, the cutoff can be

- placed anywhere along the baseline measure (as long

as there are sufficient numbers in the control group),
the direction of improvement can be positive or nega-
tive for either variable, the treatment groups could have
more than two levels, and the response variable can be
discrete or continuous.

III. VALIDITY OF THE REGRESSION-
DISCONTINUITY DESIGN

Under the assumption that the outcome-baseline func-
tional form is correctly specified, the RD design results
in an unbiased estimate of treatment effect. An unbi-
ased estimate of treatment effect is obtained because
the assignment process is known perfectly and con-
trolled for in the analysis (10). Formal statistical deri-
vations proving this lack of bias are found elsewhere
(14-17). Like the randomized experimental (RE) de-
sign, the RD design gives a known probability of as-
signment to treatments. It is imperative, though, that
the cutoff assignment rule be followed strictly. If sub-
jects are misclassified, then the treatment effect is
likely to be biased.

It can also be demonstrated that the estimate of treat-
ment effect in the RD design, like the RE design, re-
mains unbiased when random measurement error in the
observed, fallibly measured baseline covariate is con-
sidered (14—-17). The reason for this is that once the
fallibly measured observed baseline scores are known,
treatment assignment is completely determined and
hence independent of anything else, including the per-
fectly measured true baseline scores, in the RD design.
Similarly, in the RE design, treatment assignment is
completely determined by a randomization scheme and
hence independent of anything else.

Regression to the mean, which naturally emanates
from random measurement error in the observed base-
line covariate, does not therefore affect the estimate of
treatment effect in both the RD design and the RE de-
sign. Figure 2 graphically shows the impact of regres-
sion to the mean, or, equivalently, random measure-
ment error in the observed covariate, in the case of no
treatment effect when the same variable is measured at
baseline and follow-up. In the absence of a treatment
effect, and with no other effects that might change a
subject’s score at follow-up, the true regression line
should be a 45° line beginning at the origin. Regression
to the mean causes the fitted regression line to be at-
tentuated by an amount proportional to the reliability
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Fig. 2 Regression to the mean: randomized and regression-discontinuity designs.

coefficient of the baseline covariate; therefore, the sam-
ple regression coefficient of the baseline covariate on
the outcome measure is biased, but the sample regres-
sion coefficient of the treatment effect is not (14,15).

The RE design is robust in giving unbiased esti-
mates of treatment effect when the true functional form
between the baseline covariate and the outcome mea-
sure is not correctly specified. On the other hand, the
RD design is not robust here. The most critical step in
obtaining an unbiased estimate of effect in the RD de-
sign lies in modeling this true functional form correctly.
The true functional form, however, is not known in the
RD design because of missing data. As shown in Fig.
I, which assumes a linear functional form, the extrap-
olated regression line of the control group (dashed line,
right) if this group’s subjects were given the test treat-
ment instead is assumed to continue in the same linear
way as its fitted line (solid line, left). The extrapolated
regression line of the test-treated group (dashed line,
left) if this group’s subjects were given the control
treatment is assumed to continue in the same way as
its fitted line (solid line, right). There is no way to
know prospectively whether the form or the slope of
the lines in the region of missing data will be the same
as that in the region of observed data.

IV. SPECIFYING THE
FUNCTIONAL FORM

One suggestion for helping to arrive at the correct func-
tional form is to use a polynomial backward-elimina-

tion regression approach (18). Another suggestion uses
empirical Bayesian methods to overcome situations
when the outcome and baseline relationship may not
be linear, as when true baseline scores are not normally
distributed (19,20). A third approach, which can be
used with either of the other two approaches, is to fit
a regression line over a wider range of the baseline-
outcome distribution, resulting in less extrapolation and
hence a more valid fit. This last approach can be
achieved by combining the RD design with the RE
design, resulting in a cutoff design with randomization.

V. COMBINING REGRESSION-
DISCONTINUITY AND RANDOMIZED
EXPERIMENTAL DESIGNS

A regression-discontinuity design can be described as
a cutoff design without randomization. This design can
also be coupled with a randomized design. For in-
stance, patients who score within the middle range of
scores on a baseline severity-of-illness indicator (e.g.,
those moderately ill) are randomized to either one of
two treatments, while patients who score below a given
cutoff value on this indicator (e.g., those most ill) are
automatically assigned to the novel treatment and pa-
tients who score above another, higher cutoft value
(e.g., those least ill) are assigned to the control treat-
ment. Another type of cutoff design, for instance,
would have subjects below the single cutoff point (e.g.,
the most ill) randomized to either treatment, while
those above it (e.g., the least ill) are automatically as-
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signed to control treatment. These are only two possi-
ble design variations that combine cutoff assignment
and random assignment. Other variations are men-
tioned elsewhere (21,22).

Combining the RE design and the RD design may
give advantages over either design alone (21-23). Rel-
ative to the RE design, this hybrid design may be betier
suited to address ethical or practical concerns, may re-
sult in a larger eligible and diverse sample, and may
address better the effectiveness (as opposed to the ef-
ficacy) of interventions in particular circumstances.
Compared with the RD design, RD-RE design has en-
hanced validity and improved statistical power.

VI. ILLUSTRATION: COCAINE PROJECT

To illustrate the combined design, we describe a co-
caine project, conducted at the University of California
at San Francisco, that applied the RD-RE design in-
stead of the completely randomized design, which was
considered neither ethical nor feasible (24). The study
included about 500 patients with cocaine addiction.
The objective of the study was to ascertain whether
inpatient (intensive) rehabilitation showed better im-
provement, and by how much, over outpatient rehabil-
itation. The baseline assignment covariate was based

Cutoff Designs

on a weighted composite of four scales: (1) employ-
ment and legal status, (2) family relationship and re-

- covery, (3) alcohol and drug history, and (4) psycho-

logical status. Higher scores indicated more clinical
need for the more intensive (inpatient) rehabilitation.
The primary outcome variable was the same variable
measured at follow-up.

Figure 3 portrays how patients may be allocated into
inpatient or outpatient rehabilitation in this setting. All
patients who score above 60—those most severely ill
or most in need—are automatically assigned to inpa-
tient rehabilitation; all patients who score below 40—
those least ill or least in need—are automatically as-
signed to outpatient rehabilitation; and patients who
score between 40 and 60, inclusive—those moderately
ill or in need—are randomized to either inpatient re-
habilitation or outpatient rehabilitation. Note that it is
this cutoff interval of randomization that distinguishes
the RD-RE design from the RD design, which instead
has a cutoff point(s) with no randomization.

Like Fig. 1, Fig. 3 has solid lines representing the
predicted regression lines and dashed lines representing
the extrapolated regression lines, showing a constant
improvement from inpatient rehabilitation over outpa-
tient rehabilitation. An analysis of covariance model,
with the baseline assignment measure and the treatment
group variable as predictors, would be a correct model
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Fig. 3 Illustration of a combined randomized and regression-discontinuity design.
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to fit the fitted lines in Figs. 1 and 3. An analysis of
variance model, which excludes the baseline assign-
ment variable, should be not fit, for it would result in
a biased estimate of treatment effect. While linear re-
lations are highlighted in these two figures, cutoff de-
signs are not restricted to a linear baseline-outcome re-
lationship; higher-order terms (e.g., quadratic or cubic
terms), transformations on baseline or outcome varia-
bles, and interaction terms may also be fitted.

In a simulation study, several RD-RE design varia-
tions, of which the basic design in Fig. 3 is the sim-
plest, were evaluated and compared among themselves,
along with the traditional RD design and the traditional
RE design (21,22). An unbiased main treatment effect
was found for all these designs.

Figure 4 shows one of the more advanced RD-RE
designs that may be useful for accommodating varying
amounts of resources. One cutoff interval has its
bounds at 45 and 55; the other cutoff interval has its
bounds at 40 and 60. Both intervals are symmetric
around 50. Because the two intervals have different
widths, they include different numbers of randomized
patients, with the wider interval containing more ran-
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domized subjects. As subjects accrue into a study, in-
vestigators of a clinical site may favor one interval of
randomization over the other in order to address the
cost implications of having a shortage or surplus of
hospital beds for inpatient rehabilitation. Or one inter-
val may be preferred because it is more commensurate
with a hospital’s level of resources and expertise with
respect to a given treatment.

VII. MODELING AND ANALYZING
CUTOFF DESIGNS

The RD-RE combination can be modeled and analyzed
with the polynomial backward-elimination approach
suggested in Sec. IV for the RD design. Specifically,
the initial model equation is

y = bint + (btrt)¥*z + (bxcut)*xcut
+ (bxcut2)*(xcut)® + (bxcut3)*(xcut)’
+ (blinint)*(z*xcut) + (blinquad)*(z*xcut’)
+ (blincub)*(z*xcut’) + error
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Fig. 4 Randomized and regression-discontinuity design with two cutoff intervals.
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where

y = outcome measure
xcut = baseline assignment covariate minus
a baseline value at which to measure
the treatment effect (e.g., the middle value
in a cutoff interval in an RD-RE design
or the cutoff value itself in an RD design)

Z
bint

binary treatment group variable

I

intercept estimator
btrt = treatment effect estimator
bxcut = linear slope estimator
blincut = linear interaction estimator

error = sample regression error term

The other regression coefficients are the coefficients for
powers of “xcut’’ higher than 1 and for their corre-
sponding higher-order interactions. The same set of as-
sumptions that apply to linear regression (for continu-
ous responses) and to logistic regression (for discrete
responses) also apply here.

The modeling strategy first tests the significance of
each regression coefficient separately, beginning with
the higher-order interaction terms (i.e., the cubic inter-
action is tested first, followed by the quadratic inter-
action, and then linear interaction); interaction terms
are tested before main effect terms. All significant
terms and their lower-order counterparts are retained.
The baseline covariate term and the treatment group
variable are always kept in the final model.

VIII. RELATIVE SAMPLE SIZES NEEDED
IN CUTOFF DESIGNS

The simulation study mentioned in Sec. VI also showed
that, everything else the same, more randomization re-
sulted in lower standard errors of the treatment effect
estimate and therefore increased precision. It can be
shown that the amount of this precision is completely
determined by the multicollinearity or correlation (R)
between the baseline assignment covariate and the
treatment group variable as expressed by the variance

ir}ﬂati()l_l factor (VIF) (15,25):
1

VIF = ——;

Il — R

Suppose that there is a binary treatment group var-
iable and a normally distributed baseline covariate. Ta-
ble 1 provides the correlation between these two
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variables (R) and the accompanying variance inflation
factor (VIF) in symmetric cutoff designs with varying

- amounts of randomization and with 50% of the subjects

within the interval assigned randomly to either treat-
ment. The VIF can be interpreted as the design effect
of how many more subjects are needed in a given cut-
off design relative to the completely randomized design
in order to achieve the same level of statistical power,
everything else the same.

Table 1 shows that, to achieve the same level of
statistical power as the RE design, 2.75 times more
subjects are needed in an RD design; 2.48 times more
subjects are needed in an RD-RE design with 20% of
all subjects randomized (i.e., 20% randomization); 1.96
times more subjects are needed in an RD-RE design
with 40% randomization; 1.46 times more subjects are
needed in an RD-RE design with 60% randomization;
and 1.14 times more subjects are needed in an RD-RE
design with 80% randomization. Derivations for the ef-
ficiency of such a cutoff design using an analogous
approach, which gives the same results, are published
elsewhere (26).

IX. RECENT CRITIQUES

Cutoff designs are certainly not without limitations. As
mentioned earlier, an unbiased estimate of treatment
effect requires that the functional relationship between
outcome and baseline covariate be correctly modeled.
Finklestein et al. (19,20) proposed a mathematical and
statistical foundation, illustrated with examples, for
how to analyze the RD design and to draw valid sta-
tistical conclusions about treatment efficacy. The au-
thors discuss and illustrate their empirical Bayes meth-
odology, which, they mention, can be used in a variety
of circumstances, as a way (0 overcome restrictive as-
sumptions about the functional form between outcome
and baseline covariate.

Another reservation with cutoff designs is that they
preclude any serious attempt at complete blinding of
treatment, making them similar to nonrandomized de-
signs in this regard. A further drawback of cutoff de-
signs is that they are less efficient (precise) than com-
pletely randomized designs in terms of their estimates
of treatment effects. According to Senn (27), the con-
siderable excess of patients treated with the inferior
treatment in cutoff designs (especially the RD design)
relative to the RE design is likely to undermine the
ethical argument that favors cutoff designs. While it is
also true that more patients will receive the superior
treatment in cutoff designs, regardless of which treat-
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Table 1 Correlations and Variance Inflation Factors for Designs with Varying Amounts

of Randomization

Percentage of all subjects
within interval
of randomization

Correlation coefficient”

Variance inflation factor

0 (regression-discontinuity design)
20

40

60

80

100 (randomized design)

0.79 2.75
0.77 2.48
0.70 1.96
0.56 1.46
0.35 1.14
0.00 1.00

“Expected correlation between a binary treatment variable and normally distributed baseline covariate.

ment it is, researchers are urged to consider Senn’s po-
sition (27) before abandoning randomization as a per-
ceived ethical problem in a clinical trial.

X. CONCLUSIONS

Randomization should be employed whenever possible.
Cutoff designs should not replace the completely ran-
domized design in the majority of circumstances, usu-
ally involving a drug intervention, when no appreciable
logistical barriers preclude all subjects from being ran-
domized to interventions. Cutoff designs are an alter-
native design when circumstances in health services re-
search or outcomes research warrant that randomization
of all subjects cannot be undertaken, for whatever rea-
son. Cutoff designs are much more likely to be relevant
and appropriate in studies on program evaluation that
involve educational or behavioral interventions than in
traditional phase 3 studies on drug interventions, but
cutoff designs may have potential in phase 2 therapeu-
tic trials as well. When compared with nonrandomized
designs, the regression-discontinuity design (a cutoff
design with no randomization) is an attractive alterna-
tive. When some subjects can be randomized, coupling
the regression-discontinuity design with the random-
ized design is even a more attractive alternative than
the regression-discontinuity design.
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