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1. INTRODUCTION 
 

The randomized design is the preferred method for assessing the efficacy of treatments. 

Randomization of all subjects should be employed whenever possible. Randomization, in 

principle, serves at least three important purposes: (1) it avoids known and unknown 

biases on average; (2) it helps convince others that the trial was conducted properly; and 

3) it is the basis for the statistical theory that underlies hypothesis tests and confidence 

intervals (1). 

 

Randomization of all subjects has been criticized, however, because it may raise ethical 

concerns or practical limitations in certain situations. Ethical tensions may arise, for 

example, when strong a priori (though inconclusive) information favors the experimental 

treatment, when the disease is potentially life-threatening, and when randomization does 

not explicitly incorporate subjects’ baseline clinical need or their willingness to incur risk 

(2,3). Examples that have stirred considerable debate about the ethics of the randomized 

design include the controversies about the release of drugs for AIDS (4), the availability 

of drugs for cancer treatment (5), and the use of extracorporeal membrane oxygenation 

(ECMO) for neonatal intensive care (6,7).  

 

A second potential drawback of the randomized design occurs in instances when 

randomization is not feasible or practical. Such situations may arise in health services or 

outcomes research where, for example, a health education program is to be targeted only 

to people who need it (8). An evaluation and comparison between managed care and 
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usual care could be made feasible if high users of health-care utilization receive managed 

care only and low users of health-care utilization receive usual care only. A study 

concerned with the effect of a letter as an intervention to control health-care costs could 

be made practical if the letter is sent only to physicians with high billed charges per 

subscriber, while those with lower billed charges per subscriber don’t receive a letter (9). 

In these contexts, economic constraints and logistical barriers may dictate that an 

experimental intervention is neither practical nor efficient for those who don’t need it or 

who are not the targeted candidates. Moreover, treatment allocation that reflects actual 

practice allows for testing the effectiveness of the intervention -- its benefit in a real-life 

setting, as opposed to its benefit in a controlled setting. 

 

This entry discusses alternative design strategies that are intended to address ethical or 

practical concerns when it is deemed unethical or infeasible to randomize all subjects to 

study interventions. These design strategies may be called cutoff designs because they 

involve, at least in part, the assignment of subjects to treatments based on a cutoff score 

on a quantitative baseline variable that measures clinical need, severity of illness, or some 

other relevant measure. What follows is an overview of cutoff designs. 

 

II. DESCRIPTION OF THE REGRESSION-DISCONTINUITY DESIGN  

 

The most basic of cutoff designs is the regression-discontinuity design (8,10-13) in which 

a baseline indicator, for example severity of illness, can be used to assign subjects to an 

intervention. All subjects below a cutoff point on the baseline indicator receive one 
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treatment, while all subjects above it receive another treatment. The history of the 

regression-discontinuity (RD) design is found in the social sciences, specifically in 

program evaluation. It has been employed to evaluate the effects of compensatory 

education, being on the Dean’s list, a criminal justice program, a health education 

program on serum cholesterol, accelerated math training, and the NIH Career 

Development Award (14). In these scenarios randomization of subjects was not a viable 

alternative. A comprehensive history of the regression-discontinuity design in three 

academic disciples – psychology, statistics, economics – has been published (15).  

 

The traditional RD design is a single-cutoff quasi-experimental design that involves no 

random assignment. The RD design received its name from the “jump,” or discontinuity, 

at the cutoff in the regression line of baseline and outcome (follow-up) scores that occurs 

when there a treatment effect. Figure 1 depicts a RD design with a hypothetical 10-point 

treatment effect (reduction). All subjects with scores above 20 on the baseline assignment 

indicator are most in the need of the intervention and hence are automatically assigned to 

the test (experimental) treatment, while those with scores of 20 or less (those less in need) 

are automatically assigned to control treatment.  

 

As Figure 1 illustrates, the outcome scores of the test treatment group (those scoring 

above the cutoff) are lowered by an average of 10 points from where they would be 

expected in the absence of a treatment effect. The solid lines show the predicted 

regression lines for a 10-point effect, and the dashed lines show the expected regression 

lines for patients in a treatment group if they were given the other intervention instead. 
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___________________ 

Figure 1 about here 

___________________ 

 

The baseline assignment covariate should be measured on at least an ordinal scale; it is 

more desirable, though, to have a continuous (ratio-level or interval-level) baseline 

assignment variable. Baseline and outcome may be the same or different, the cutoff can 

be placed anywhere along the baseline measure (as long as there are sufficient numbers in 

the control group), the direction of improvement can be positive or negative for either 

variable, the treatment groups could have more than two levels, and the response variable 

can be discrete or continuous. 

 

III.VALIDITY OF THE REGRESSION-DISCONTINUITY DESIGN 

         

Under the assumption that the outcome-baseline functional form is correctly specified, 

the RD design results in an unbiased estimate of treatment effect. An unbiased estimate of 

treatment effect is obtained because the assignment process is known perfectly and 

controlled for in the analysis (10). Formal statistical derivations proofing this 

unbiasedness are found elsewhere (14-18). Like the randomized experimental (RE) 

design, the RD design gives a known probability of assignment to treatments. It is 

imperative, though, that the cutoff assignment rule be followed strictly. If subjects are 

misclassified, then the treatment effect is likely to be biased.  
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It can also be demonstrated that the estimate of treatment effect in the RD design, like the 

RE design, remains unbiased when random measurement error in the observed, fallibly 

measured baseline covariate is considered (14-18). The reason for this is, once the fallibly 

measured observed baseline scores are known, treatment assignment is completely 

determined and hence independent of anything else, including the perfectly measured true 

baseline scores, in the RD design. Similarly, in the RE design, treatment assignment is 

completely determined by a randomization scheme and hence independent of anything 

else.  

______________________ 

Figure 2 about here 

______________________ 

 

Regression to the mean, which naturally emanates from random measurement error in the 

observed baseline covariate, does not therefore affect the estimate of treatment effect in 

both the RD design and the RE design. Figure 2 graphically shows the impact of 

regression to the mean, or, equivalently, random measurement error in the observed 

covariate, in the case of no treatment effect when the same variable is measured at 

baseline and follow-up. In the absence of a treatment effect, and with no other effects that 

may change a subject’s score at follow-up, the true regression line should be a 45-degree 

line beginning at the origin. Regression to the mean causes the fitted regression line to be 

attenuated by an amount proportional to the reliability coefficient of the baseline 
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covariate; therefore, the sample regression coefficient of the baseline covariate on the 

outcome measure is biased, but the sample regression coefficient of the treatment effect is 

not (14,16). 

 

The RE design is robust in giving unbiased estimates of treatment effect when the true 

functional form between the baseline covariate and the outcome measure is not correctly 

specified. On the other hand, the RD design is not robust here. The most critical step in 

obtaining an unbiased estimate of effect in the RD design lies in modeling this true 

functional form correctly. The true functional form, however, is not known in the RD 

design because of missing data. As shown in Figure 1, which assumes a linear functional 

form, the extrapolated regression line of the control group (dashed line, right) if this 

group’s subjects were given test treatment instead is assumed to continue in the same 

linear way as its fitted line (solid line, left). The extrapolated regression line of the test-

treated group (dashed line, left) if this group’s subjects were given control treatment is 

assumed to continue in the same way as its fitted line (solid line, right). There is no way 

to know prospectively whether the form or the slope of the lines in the region of missing 

data will be the same as that in the region of observed data.  

 

IV. SPECIFYING THE FUNCTIONAL FORM 

 

One suggestion for helping to arrive at the correct functional form is to use a polynomial 

backward elimination regression approach (19). Another suggestion uses empirical 

Bayesian methods to overcome situations when the outcome and baseline relationship 
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may not be linear, as when true baseline scores are not normally distributed (20, 21). A 

third approach, which can be used with either of the other two approaches, is to fit a 

regression line over a wider range of the baseline-outcome distribution, resulting in less 

extrapolation and hence a more valid fit. This last approach can be achieved by 

combining the RD design with the RE design, resulting in a cutoff design with 

randomization.  

 

V. COMBINING REGRESSION-DISCONTINUITY AND RANDOMIZED 

EXPERIMENTAL DESIGNS 

 

A regression-discontinuity design can be described as a cutoff design without 

randomization. This design can also be coupled with a randomized design. For instance, 

patients who score within the middle range of scores on a baseline severity-of-illness 

indicator (e.g., those moderately ill) are randomized to either one of two treatments, while 

patients who score below a given cutoff value on this indicator (e.g., those most ill) are 

automatically assigned to the novel treatment and patients who score above another, 

higher cutoff value (e.g., those least ill) are assigned to the control treatment. Another 

type of cutoff design, for instance, would have subjects below the single cutoff point 

(e.g., the most ill) randomized to either treatment, while those above it (e.g., the least ill) 

are automatically assigned to control treatment. These are only two possible design 

variations that can combine cutoff assignment and random assignment. Other variations 

are mentioned elsewhere (22,23).  
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Combining the RE design and the RD design may give advantages over either design 

alone (22-24). Relative to the RE design, this hybrid design may be better suited to 

address ethical or practical concerns, may result in a larger eligible and diverse sample, 

and may better address the effectiveness (as opposed to the efficacy) of interventions in 

particular circumstances. Compared with the RD design, RD-RE design has enhanced 

validity and improved statistical power.  

 

 

 

 

VI. ILLUSTRATION: COCAINE PROJECT   

 

To illustrate the combined design, we describe a cocaine project, conducted by Havassy 

and colleagues at the University of California at San Francisco, that applied the RD-RE 

design instead of the completely randomized design, which was considered neither ethical 

nor feasible. The study included about 500 patients with cocaine addiction. The objective 

of the study was whether inpatient (intensive) rehabilitation showed better improvement, 

and by how much, over outpatient rehabilitation. The baseline assignment covariate was 

based on a weighted composite of 4 scales: 1) employment and legal status, 2) family 

relationship and recovery, 3) alcohol and drug history, and 4) psychological status. Higher 
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scores indicated more clinical need for the more intensive (inpatient) rehabilitation. The 

primary outcome variable was the same variable measured at follow-up.  

 

Figure 3 portrays how patients may be allocated into inpatient or outpatient rehabilitation 

in this setting. All patients who score above 60 -- those most severely ill or most in  

need -- are automatically assigned to inpatient rehabilitation; all patients who score below 

40 -- those least ill or least in need -- are automatically assigned to outpatient 

rehabilitation; and patients who score in between 40 and 60, inclusive -- those moderately 

ill or in need -- are randomized to either inpatient rehabilitation or outpatient 

rehabilitation. Note that it is this cutoff interval of randomization that distinguishes the 

RD-RE design from the RD design, which instead has a cutoff point(s) with no 

randomization.  

 
__________________ 

Figure 3 about here 

__________________ 

 

Like Figure 1, Figure 3 has solid lines representing the predicted regression lines and 

dash lines representing the extrapolated regression lines, showing a constant 

improvement from inpatient rehabilitation over outpatient rehabilitation. An analysis of 

covariance model, with the baseline assignment measure and the treatment group variable 

as predictors, would be a correct model to fit the fitted lines in Figures 1 and 3. An 

analysis of variance model, which excludes the baseline assignment variable, should not 
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be fit as it would result in a biased estimate of treatment effect. While linear relations are 

highlighted in these two figures, cutoff designs are not restricted to a linear baseline-

outcome relationship; higher-order terms (e.g., quadratic or cubic terms), transformations 

on baseline or outcome variables, and interaction terms may also be fitted. 

        

In a simulation study, several RD-RE design variations, of which the basic design in 

Figure 3 is the simplest one, were evaluated and compared among themselves, along with 

the traditional RD design and the traditional RE design (22,23). An unbiased main 

treatment effect was found for all these designs.  

 

      _________________ 

Figure 4 about here 

_________________ 

        

Figure 4 shows one of the more advanced RD-RE designs that may be useful for 

accommodating varying amounts of resources. One cutoff interval has its bounds at 45 

and 55; the other cutoff interval has its bounds at 40 and 60. Both intervals are symmetric 

around 50. Because the two intervals have different widths, they include different 

numbers of randomized patients, with the wider interval containing more randomized 

subjects. As subjects accrue into a study, investigators of a clinical site may favor one 

interval of randomization over the other in order to address the cost implications of 

having a shortage or surplus of hospital beds for inpatient rehabilitation. Or one interval 
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may be preferred because it is more commensurate with a hospital’s level of resources 

and expertise with respect to a given treatment.  

 

VII. MODELING AND ANALYZING CUTOFF DESIGNS  

 

The RD-RE combination can be modeled and analyzed with the polynomial backward 

elimination approach mentioned in Section IV for the RD design. Specifically, the initial 

model equation is  

y     =          bint + (btrt)*z  +   (bxcut)*xcut   +   (bxcut2)*(xcut)2     +   (bxcut3)* (xcut)3 

              +   (blinint)*(z*xcut)  +    (blinquad)*(z*xcut2)+ (blincub)*(z*xcut3)  + error 

where 

  y = outcome measure 

xcut =  baseline assignment covariate minus a baseline value at which to 

measure the treatment effect (e.g., the middle value in a cutoff 

interval in a RD-RE design or the cutoff value itself in a RD 

design)  

    z = binary treatment group variable  

  bint = intercept estimator 

  btrt = treatment effect estimator 

  bxcut = linear slope estimator 

  blincut = linear interaction estimator 

  error = sample regression error term. 
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The other regression coefficients are the coefficients for powers of “xcut” higher than 1 

and for their corresponding higher-order interactions. The same set of assumptions that 

apply to linear regression (for continuous responses) and to logistic regression (for 

discrete responses) also applies here. 

        

The modeling strategy first tests the significance of each regression coefficient separately 

beginning with the higher-order interaction terms (i.e., the cubic interaction is tested first, 

followed by the quadratic interaction, and then linear interaction); interaction terms are 

tested before main effect terms. All significant terms and their lower-order counterparts 

are retained. The baseline covariate term and the treatment group variable are always kept 

in the final model. 

 

VIII. RELATIVE SAMPLE SIZES NEEDED IN CUTOFF DESIGNS   

 

The simulation study mentioned in Section VI also showed that, everything else the same, 

more randomization resulted in lower standard errors of the treatment effect estimate and 

therefore increased precision. It can be shown that the amount of this precision is 

completely determined by the multicollinearity or correlation (R) between the baseline 

assignment covariate and the treatment group variable as expressed by the Variance 

Inflation Factor (16): 

     VIF = 1 / (1 - R2)   . 
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Suppose that there is a binary treatment group variable and a normally distributed 

baseline covariate.  Table 1 provides the correlation between these two variables (R) and 

the accompanying variance inflation factor (VIF) in symmetric cutoff designs with 

varying amounts of randomization and with 50% of the subjects within the interval 

assigned randomly to either treatment. The VIF can be interpreted as the design effect of 

how many more subjects are need in a given cutoff design relative to the completely 

randomized design in order to achieve the same level of statistical power, everything else 

the same.  

_________________ 

Table 1 about here 

__________________ 

        

 

Table 1 shows that, to achieve the same level of statistical power as the RE design, 2.75 

times more subjects are needed in a RD design; 2.48 times more subjects are needed in a 

RD-RE design with 20% of all subjects randomized (i.e., 20% randomization); 1.96 times 

more subjects are needed in a RD-RE design with 40% randomization; 1.46 times more 

subjects are needed in a RD-RE design with 60% randomization; and 1.14 times more 

subjects are needed in a RD-RE design with 80% randomization. Derivations for the 

efficiency of such a cutoff design using an analogous approach, which gives essentially 

the same results, are published elsewhere (25).   
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IX. SOME ADDITIONAL RESEARCH 

 

Cutoff designs are certainly not without limitations. As mentioned earlier, an unbiased 

estimate of treatment effect requires that the functional relationship between outcome and 

baseline covariate be correctly modeled. Finklestein et al. (20,21) proposed a 

mathematical and statistical foundation, illustrated with examples, for how to analyze the 

RD design and to draw valid statistical conclusions about treatment efficacy. The authors 

discussed and illustrated their empirical Bayes methodology, which they mention can be 

used in a variety of circumstances, as a way to overcome restrictive assumptions about 

the functional form between outcome and baseline covariate. In other research, Hahn et 

al. (26) proposed a way of nonparametrically estimating treatment effects and offered an 

interpretation of the Wald estimator as an estimator of effect.  

 

Another reservation with cutoff designs is that they preclude any serious attempt at 

complete blinding of treatment, making them similar to nonrandomized designs in this 

regard. A further drawback of cutoff designs is they are less efficient (precise) than 

completely randomized designs in terms of their estimates of treatment effects. According 

to Senn (27), the considerable excess of patients treated on the inferior treatment in cutoff 

designs (especially the RD design) relative to the RE design is likely to undermine the 

ethical argument that favors cutoff designs. Although it is also true that more patients will 

receive the superior treatment in cutoff designs, regardless of which treatment it is, 

researchers are urged to consider Senn’s position (27) before abandoning randomization 

as a perceived ethical problem in a clinical trial.  
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Another variation of the RD design is the clustered RD design where groups (rather than 

individuals) are assigned to an intervention. The clustered RD design was the primary 

design to evaluate the federal education program prescribed in the No Child Left Behind 

Act of 2001. Schochet (28) examined statistical power under clustered RD designs 

(without randomization) using techniques from the causal inference and hierarchical 

linear modeling literature. The main conclusion is that three to four times larger samples 

are typically required under the clustered RD design than the clustered RE design to 

achieve estimates of effect with the same level of precision.   

 

Published studies using the RD design have focused primarily on linear regression 

applied to a categorical indicator and an interval-level response. Berk and de Leeuw (29) 

formalized a generalization of the usual RD design to a wider range of situations. They 

focused on the use of a categorical treatment and response variables, but considered the 

more general case of any regression relationship. In addition, a resampling sensitivity 

analysis was shown as a way to address the credibility of the assumed assignment 

process. The broader formulation is applied to an evaluation of California’s innate 

classification system, which is used to allocate prisoners to different kinds of 

confinement.  
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X. CONCLUSIONS   

 

Randomization should be employed whenever possible. Cutoff designs should not replace 

the completely randomized design in the majority of circumstances, usually involving a 

drug intervention, when no appreciable logistical barriers preclude all subjects from being 

randomized to interventions. Cutoff designs are an alternative design when circumstances 

in health services research or outcomes research warrant that randomization of all 

subjects cannot be undertaken, for whatever reason. Cutoff designs are much more likely 

to be relevant and appropriate in studies on program evaluation that involve educational 

or behavioral interventions, such as in disease management programs where 

randomization is not feasible ethically or logistically for the entire sample (30), than in 

traditional Phase III studies on drug interventions, but cutoff designs may have some 

potential in phase II therapeutic trials as well. When compared with nonrandomized 

designs, the regression-discontinuity design (a cutoff design with no randomization) is an 

attractive alternative. When some subjects can be randomized, coupling the regression-

discontinuity design with the randomized design is even a more attractive alternative than 

the RD design. 
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Table 1.   Correlations and variance inflation factors of designs with varying amounts of      

     randomization  

  

Percentage of All Subjects within     Correlation    Variance Inflation 

the Interval of Randomization     Coefficient*                     Factor  

________________________________________________________________________

0  (Regression-Discontinuity Design)   0.79               2.75 

20       0.77              2.48 

40       0.70              1.96 

60       0.56              1.46 

80      0.35              1.14 

100  (Randomized Design)   0.00              1.00 

 
*Expected correlation between a binary treatment variable and normally distributed baseline 

covariate.     
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FIGURE LEGENDS 
 
 
Figure 1. Regression-Discontinuity design with a 10-point treatment effect 
 
Figure 2. Regression to the mean: randomized and regression-discontinuity designs 
 
Figure 3. Illustration of a combined randomized and regression-discontinuity design 
 
Figure 4. Randomized and regression-discontinuity design with two cutoff intervals 
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