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Stanley (1991) argues that both random measurement error in the pretest and treatment-effect
interactions bias the estimate of the treatment effect when multiple regression is used to analyze
the data from a regression-discontinuity design (RDD). Stanley also argues that these biases are
so severe that they should cause researchers to consider using statistical procedures other than
regression analysis. The authors of the present article disagree. Curvilinearity in the regression
of the posttest on pretest scores can be difficult to model, can bias the regression analysis of data
from the RDD if not modeled correctly, and therefore should cause researchers to consider
alternatives to regression analysis. If the regression surfaces are linear, however, unbiased
estimates can be obtained easily via regression analysis, whether or not either random measure-
ment error in the pretest or treatment-effect interactions are present. Improving upon regression
analysis is a worthy goal but requires understanding just what are and are not the weaknesses
of the method. In addressing these issues, this article elucidates some of the general principles
that underlie the use of multiple regression to analyze data from the RDD quasi-experiment.
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Stanley (1991; Stanley and Robinson 1990a) argues that, in the RDD
quasi-experiment, estimates of effects derived from regression analysis are
biased both by random measurement error in the pretest and by interactions
between the treatment and the pretest. Stanley (1991) further argues that these
biases are 5o severe that researchers ought to consider abandoning regression
analysis in the RDD in favor of alternative procedures. In addition, Stanley
(1991) accuses Trochim, Cappelleri, and Reichardt (1991) of misunderstand-
ing statistical estimation (p. 611), obfuscating the real issues (p. 620), and
trying to deflect legitimate criticism of the regression-discontinuity design
(pp. 614 and 619). The tone of Stanley’s (1991) article is captured by the
following remarks regarding Trochim et al. (1991):

It is my thesis that [the article) is entirely misdirected. (p. 606)
[1t] serves no useful purpose; if taken seriously, it can only obstruct future progress in
quasi-experimental evaluation. (p. 614)

In the effort to defend RD from its own fallibility, Trochim et al. have made RD as useless

at [sic] it is unassailable. (p. 615)

We see things differently. We believe that the Achilles heel of regression
analysis, when used to analyze data from the RDD, is curvilinearity rather
than either random measurement error in the pretest or treatment-effect
interactions. That is, curvilinearity in the regression of posttest on pretest
scores can bias the estimates of treatment effects in the regression analysis of
data from a RDD, and the bias can be difficult to model (Cook and Campbell
1979; Reichardt 1979; Rubin 1977; Trochim 1984). In the absence of curvil-
inearity, however, estimates of treatment effects in the RDD are not biased
by random measurement error in the pretest, and regression analysis can be
adapted easily to provide unbiased estimates of treatment effects in the
presence of treatment-effect interactions. Alternatives to regression analysis
may well be useful in analyzing data from the RDD, and we strongly
encourage their development and testing. To improve on regression analysis,
however, it is important to understand what are and are not the true sources
of its weaknesses.

This article examines the effects of random measurement error in the
pretest, treatment-effect interactions, and curvilinearity in the regression
analysis of data from the RDD and, in so doing, draws comparisons with the
regression analysis of data from the randomized experiment (RE). In particu-
lar, three sets of conditions of increasing generality are considered. The first
set of conditions restricts the regression of posttest scores on pretest scores
to be linear and the treatment effect to be a constant, but it allows the pretest
to contain random measurement error. The second set of conditions restricts

Reichardt et al. / REGRESSION-DISCONTINUITY 41

the regression of posttest on pretest scores to be linear but allows both the
effect of the treatment to interact with the pretest and the pretest to contain
random measurement error. The third set of conditions allows the regression
of posttest on pretest scores to be curvilinear, the effect of the treatment to
interact with the pretest, and the pretest to contain random measurement error.
While examining these three sets of conditions, we also try to point out a few
of the ways in which Trochim et al. (1991) is not entirely misdirected.

DEFINITIONS AND NOTATION

This section provides the background definitions and notation that are
needed to specify the three sets of conditions and their consequences. A
population of N individuals is assumed to be available for study, where N is
large. Each individual in the population can receive either one of two
conditions, a treatment protocol or a comparison protocol. Each individual
in the population also can be measured on both a pretest and a posttest. An
individual’s pretest score will be denoted by X;, where the subscript i can take
on values between 1 and N so as to denote the individuals either within the
population or within a sample. Similarly, Y; denotes an individual’s posttest
score.

Random measurement error in the pretest is allowed. More specifically,
the observed pretest scores, the X, are assumed to be equal to T; + U,, where
T; denotes the true pretest score, U, denotes random measurement error, and
U, is assumed to be uncorrelated with T, in the population. Note that when
we speak of the “pretest score” without using either “observed” or “true” as
a modifier, we always mean the observed pretest score. If no measurement
error is present, the Us are all zero.

We assume that an individual’s posttest score does not depend on whether
other individuals receive the treatment protocol or the comparison protocol.
This assumption is called the stable-unit-treatment-value assumption
(SUTVA) by Rubin (1980).

Let the distribution of posttest scores that would result if every individual
in the population were to receive the comparison protocol be called Distri-
bution 1. Let the distribution of posttest scores that would result if every
individual in the population were to receive the treatment protocol be called
Distribution 2. Any difference between these two distributions is an effect of
the treatment protocol, as compared to the comparison protocol (Rubin 1974,
1978; Holland 1986). In particular, the “main effect of the treatment” is
defined as the difference between the means of Distribution 2 and Distribu-
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tion 1. This definition applies whether or nota treatment-effect interaction is
present.

To define the size of the average treatment effect at a given observed
pretest score, take all the individuals in the population who had the given
observed pretest score and determine what their posttest scores would have
been had they received the comparison protocol. Call the distribution of these
posttest scores “Distribution 1 given the observed pretest score.” Also take
all the individuals who had the given observed pretest score and determine
what their posttest scores would have been had they received the treatment
protocol. Call the distribution of these posttest scores “Distribution 2 given
the observed pretest score.” Then the average treatment effect at a given
observed pretest score is defined as the difference between the mean of
Distribution 2 given the observed pretest score and the mean of Distribution
1 given the observed pretest score. (The average treatment effect at a given
true pretest score is defined identically, except that the observed pretest is
replaced by the true pretest.) An interaction of the treatment effect with the
pretest is present when the average treatment effect at a given pretest score
varies with the pretest scores. In the absence of a treatment-effect interaction
with the pretest, the average treatment effect at a given pretest score is equal
to the main effect of the treatment. .

To estimate the effects of the treatment, the researcher randomly samples
n individuals from the population of N individuals, where n is assumed to be
a small proportion of N (otherwise a finite population correction might be
needed), although n need not be small in absolute size. Each individual in the
sample is measured on the pretest and then assigned to one of the two
treatment conditions. Therefore, an individual’s pretest score remains the
same regardless of the treatment condition.

The assignment to treatment condition might occur in any number of ways.
We consider only two. First, the researcher could assign individuals to
treatment conditions at random. This type of assignment produces a random-
ized experiment (RE). Second, the researcher could assign all those individu-
als in the sample who have observed pretest scores on oneé side of a given
cutoff value, C, to one condition and all those individuals with observed
pretest scores on the other side of the cutoff value, C, to the other condition.
This type of treatment assignment produces a regression-discontinuity design
(RDD).

Following the assignment of individuals in the sample to the treatment
conditions, the researcher administers the treatment and comparison proto-
cols and also takes the posttest measure on each individual in the sample.
Then knowledge of the assignment mechanism and of the observed pretest
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and posttest scores for the individuals in the sample is used to estimate the
effects of the treatment.

CASE 1: LINEAR RELATIONSHIP
AND CONSTANT TREATMENT EFFECT

In this section, we assume that the regression of the posttest scores on
pretest scores would be linear in the population if all N individuals received
the treatment protocol or if all N individuals received the comparison proto-
col. We also assume that the treatment effect is equal to a constant, K, for
each individual in the population. -

A Simple Regression Model
Consider the following model
Y=o+ BZ +BX - X*) +¢ M

where g, is a residual, X* is an arbitrary constant that is chosen by the
researcher based on the purpose of the analysis (as explained in later sections),
and Z, is an assignment variable that equals 1 if the individual is assigned to
the treatment condition and O if the individual is assigned to the comparison
condition.! Equation 1 is a regression model. It is also an analysis of
covariance (ANCOVA) model. If the term involving the pretest (B,[X; - X*])
were omitted, Equation 1 would be an analysis of variance (ANOVA) model.
Using ordinary least squares (OLS) regression, this model could be fit to the
data on the pretest (X), posttest (Y), and assignment variable (Z) from the

sample of n individuals so as to produce estimates of the values of o, By, B2,
and their standard errors.

Estimating the Effect of the Treatment

Under the given conditions, the value of B, that would be produced by
fitting Equation 1 using OLS regression would be an unbiased estimate of
the main effect of the treatment, K, if the design were either an RE oranRDD.
This holds regardless of the value chosen for X* in Equation 1. In both the
RE and the RDD, the choice of the value of X* in Equation 1 influences the
estimate of o and its standard error but does not alter the estimate of the main
effect of the treatment (i.¢., the estimate of ), the estimate of the regression
slope (i.e., the estimate of B,), or the standard errors of these estimates.
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If, in the population, the variance of the posttest were the same at all levels
of the pretest in both treatment groups, the estimate of the main effect of the
treatment (i.e., the estimate of ;) would be the best linear unbiased (BLU)
estimate that is possible given the available data, in both the RE and the RDD
(Johnston 1972, 126; Theil 1971, section 3.4). This means that no alternative
estimate could be created by taking a linear combination of the posttest scores
so that the estimate would both be unbiased and have a smaller standard error
than the OLS estimate. If the variance of the posttest were not the same at all
levels of the pretest in the two treatment groups, a generalized least squares
(GLS) regression procedure, rather than the OLS procedure, would make B,
a BLU estimate of the main effect of the treatment, in both the RE and the
RDD (Johnston 1972, 210).2 In essence, this means that it might be quite
difficult to come up with an alternative statistical procedure that would
produce a more accurate estimate of the main effect of the treatment than
would regression analysis, under the given conditions.

Random Measurement Error in the Pretest

In both the RE and the RDD, the pretest can be any measure. The pretest
could be conceptually identical to the posttest, or it could be conceptually
unrelated to the posttest. If everything else is the same, however, the higher
the correlation between the pretest and posttest in the population, the more
precise will be the estimate (and the more powerful will be the statistical
significance test) of the main effect of the treatment, in both the RE and the
RDD. As random measurement error is added to the pretest (or to the posttest
for that matter), the correlation between the pretest and posttest decreases. As
a result, the precision of the estimate of the main effect of the treatment is
diminished, in both the RE and the RDD. :

Adding random measurement error to the pretest also attenuates the
estimate of the regression slope (i.e., the estimate of ,) in both the RE and
the RDD (Cochran 1968). As more random measurement error is added to
the pretest, the estimate of B, becomes more biased as an estimate of what
the regression slope would be if there were no measurement error in the
pretest. If the variance of the random measurement error in the pretest were
the same at all values of the true pretest, and if p were an unbiased estimate
of the reliability of the pretest, the estimate of B, divided by p would be an
asymptotically unbiased estimate of what the regression slope would be if
the pretest contained no random measurement error.

The attenuation of the regression slope due to random measurement error
in the pretest, however, does not bias the estimate of the main effect of the
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treatment in either the RE or the RDD (Goldberger 1972; Judd and Kenny
1981; Mohr 1988; Reichardt 1979; Trochim 1984; Trochim and Cappelleri
1992). That is, under the present background assumptions (inCluding the
assumption that the regression of the posttest on pretest scores is linear), the
estimate of B, remains an unbiased estimate of the main effect of the treatment
in both the RE and the RDD, regardless of the amount of random measure-
ment error in the pretest. Therefore, there is no need to make an adjustment
for random measurement error in the pretest when estimating the main effect
of the treatment. In addition, all the statements in the preceding section
(including the statements about the estimate of B, being BLU and the
difficulty of improving upon regression analysis when estimating the treat-
ment main effect) hold regardless of the amount of random measurement
error in the pretest.

Stanley and Robinson (1990b) mistakenly claimed that the attenuation in
the regression slope that is produced by random measurement error in the
pretest introduces a bias in the estimate of the main effect of the treatment in
the RDD. This mistake was explicitly corrected in Cappelleri et al. (1991).

Dissimilarities Between the Randomized Experiment
and the Regression-Discontinuity Design

Although Equation 1 would provide an unbiased estimate of the main
effect of the treatment for both the RE and the RDD under the given
conditions (regardless of the presence or absence of random measurement
error in the pretest), there is at least one very important difference between
the estimates of the main effect of the treatment that would be obtained in the
RE and in the RDD. The estimate of the main effect of the treatment obtained
by fitting Equation 1 with regression analysis would be more precise (and the
test of its statistical significance would be more powerful) in the RE than in
the RDD. In particular, even under ideal conditions, more than twice as many
individuals would be needed in the RDD for the precision of the estimate of
the main effect of the treatment (or for the power of the test of statistical
significance) to be the same as in the RE (Goldberger 1972; Cappelleri,
Darlington, and Trochim 1994). This difference in both precision and power
between the RE and the RDD arises because of differences in multicollinear-
ity. The difference in multicollinearity arises because the expected value of
the correlation between the pretest (X) and the assignment variable (Z) is zero
in the RE but far from zero in the RDD.

Stanley and Robinson (1990a) reach a conclusion that is in conflict with
the literature (and with our conclusion above) about the relative power of the




AT e e .- - P

46 EVALUATION REVIEW / FEBRUARY 1995

statistical significance test of the main effect of the treatment in the RDD and
the RE:

Looking at the best cases . . . , the statistical power of RD {our RDD] (3.6%, 32%, 80%
and 100%} is stightly better than the corresponding values of TE [our RE] {2.2%, 23%,
68.6% and 99.8%}. Even when the R? of the RD model is reduced to 0.6, RD is only
slightly less powerful than TE. (p. 11)

Stanley and Robinson (1990a) reached these discordant conclusions because
they calculated power using different statistical models in the two designs.
Specifically, they computed power for the RDD using Equation 1, which
included the pretest as a covariate, but computed power for the RE using the
ANOVA model, which is identical to Equation 1 except that it excludes the
pretest from the model (i.e., it excludes the B,[X; — X*] term). As a result,
Stanley and Robinson (1990a) compared apples with oranges. If a pretest is
available for one design, an appropriate comparison of precision and power
requires having a pretest available for the other design, using the same
statistical model.

The omission of the pretest in the analysis of data from the RE when
drawing comparisons with the analysis of data from the RDD leads Stanley
and Robinson (1990a, 17) to the incorrect conclusion that “in ideal condi-
tions, these quasi-experiments [meaning the RDD among other designs] may
be as good as the ‘real thing’ [meaning the RE].” The truth is that even under
ideal conditions, the RE enjoys a decided advantage over the RDD in terms
of precision and power.

CASE 2: LINEAR RELATIONSHIP
AND NONCONSTANT TREATMENT EFFECT

In this section, we retain the assumption that the regression of posttest on
pretest scores would be linear in the population if all N individuals received
the treatment condition or if all N individuals received the comparison
condition. Instead of assuming that the treatment effect is a constant, how-
ever, we now allow for a treatment-effect interaction. Specifically, we allow
the average treatment effect at a given pretest score to vary linearly with the
value of the pretest score. In other words, we assume that the average effect
of the treatment at a given pretest score is equal to X

K+L(X-u) )

where K and L are constants and i, is the overall mean of the pretest scores
in the population. Under these assumptions, K equals the main effect of the
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treatment and L represents the treatment-effect interaction, which equals the
difference in the average treatment effect for individuals whose pretest scores
differ by one unit.

Equation 1 does not allow for a treatment-effect interaction. Nevertheless,
the estimate of (B, obtained from Equation 1 would still be an asymptotically
unbiased estimate of the main effect of the treatment (K) in the RE, although
the standard error of the estimate would be biased (Johnston 1972). In
contrast, using Equation 1 in the RDD would, under the present assumptions,
generally produce asymptotically biased estimates of the main effect of the
treatment. The bias, however, is easily removed. All that is needed is the
slightly more complex model given below, which differs from Equation 1

because a term to represent a linear treatment-effect interaction has been
added:

Y, =a+B,Z + (X, - X+ B,Z(X, - X*) +¢, 3

In this equation, X* is an arbitrary constant chosen by the researcher, as
described below.

Estimating the Effect of the Treatment
at a Given Observed Pretest Score

The estimate of §; derived from Equation 3 depends on the value chosen

for X*. Setting X* equal to some arbitrary pretest value, W, makes f3, an
unbiased estimate of the average treatment effect for an observed pretest score
equal to W, in both the RDD and the RE. In particular, setting X* equal to C
makes B, an unbiased estimate of theé average treatment effect at the
assignment-cutoff point in the RDD.
__Inaddition, if X* is setequal to the mean of the pretest scores in the sample,
X, the estimate of B, is an asymptotically unbiased estimate of the main effect
of the treatment in both the RDD and the RE. In the RDD, however, it is
usually recommended that researchers pay more attention to the estimate of
the average treatment effect at the assignment-cutoff score than to the
estimate of the main effect of the treatment (Campbell 1969; Reichardt 1979;
Trochim 1984). This is because less extrapolation is generally involved in
estimating the treatment effect at the cutoff score than in estimating the main
effect of the treatment, and therefore the estimate of the treatment effect at
the cutoff score tends to be more credible than the estimate of the main effect
of the treatment.?

If the variance of the posttest scores is the same across levels of the pretest
under both the treatment and the comparison conditions, the OLS estimate
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of the treatment effect (B,) at the assignment-cutoff point (or at any other
given pretest score) is BLU (Johnston 1972; Theil 1971). If the variances of
the posttest scores are not constant, a GLS procedure would provide estimates
that are BLU.

The above results hold regardless of the amount of random measurement
error in the pretest. In other words, when the regression of posttest on pretest
scores is linear, neither treatment-effect interactions nor random measure-
ment error bias the estimate (B,) of the treatment effect at a given observed
pretest score if the model in Equation 3 is fit to the data using regression
analysis, in either the RDD or the RE. In addition, it might be quite difficult
to get more accurate estimates of the treatment effect than obtained by fitting
Equation 3 using regression analysis, in either the RDD or the RE. These
conclusions appear to be at odds with Stanley’s (1991) conclusions.

Estimating the Treatment Effect Interaction

If Equation 3 were fit repeatedly with different values of X*, the estimates
of B, would vary linearly with the value of X*, in both the RE and the RDD.
That is, for every one unit change in X*, the estimate of 3, would change by
a constant. This constant would be equal to the estimate of 3, (which would
be the same regardless of the value chosen for X*) and would be an unbiased
estimate of the treatment-effect interaction, L, in Equation 2 above in both
the RE and RDD. These estimates of the treatment-effect interaction are BLU
under the same conditions as specified above for the BLUness of the estimate
of the effect of the treatment at a given pretest score. In addition, these results
hold regardless of the amount of random measurement error in the pretest.

In practice, if a researcher is in doubt about the presence of a treatment-
effect interaction, there is some benefit to including an interaction term in the
analysis as in Equation 3. On the other hand, one potential disadvantage,
especially in the RDD, is that if a treatment-effect interaction is not present
or is very small, including an interaction term in the analysis may do more
harm (by lowering the precision and power of the analysis because of
multicollinearity) than good (by reducing bias).

Misunderstanding the Role Played by X*

Because the estimate of B, depends on the researcher-specified value of
X* in Equation 3, as described above, researchers need to interpret the
estimate of P, in light of the value that is chosen for X*. Stanley (1991)
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misunderstands the role played by X* when he concludes, mistakenly, that
B, in Equation 3 is biased:

Trochim et al. simulate this precise combination of circumstances which they term,
Model 1 [Equation 3], in their first simulation study. Yet their results show quite clearly
that there will be a bias in the OLS estimate of the treatment effect [B1]. (p. 612, italics
in original)

Because the estimation model that Trochim (1990) advocates leads to estimates of [B)]

that syste'matically vary from the true {1} and because Ho: {B1] = 0 is his recommended
hypothesis test for a treatment effect, Trochim’s RD evaluation method is biased. (p. 613)

T:l\e point is that an evaluator who competently and correctly applies statistical tech-
niques rl?commendcd by RD “methodologists” will likely obtain estimates that are
systematically off and may find effects that are not actually there. (p. 613)

Stanley (1991) reaches these conclusions because he mistakenly believes that
the estimate of B, in Equation 3 will be an estimate of the main effect of the
treatment regardless of the value of X*. As explained above, the estimate of
B, will be an estimate of the main effect of the treatment only if X* is set
equal to the average pretest score, X, in the sample. If, instead, X* is set equal
to the value of the cutoff score (C), the value of B, will estimate the average
effect of the treatment at the cutoff score, which can be quite different from
the estimate of the main effect of the treatment. In Trochim et al.’s Model 1,
which is the focus of Stanley’s attention, the value of X* was set equal to the
cutoff score C (as is clearly seen, for example, in Stanley 1991, 612).
Therefore, it makes little sense for Stanley (1991) to expect the value of B,
from this model to estimate the main effect of the treatment, but this is what
Stanley does. As a result, Stanley’s criticisms of “Trochim’s RD evaluation
method” are misguided. To “competently and correctly apply statistical
techniques recommended by RD methodologists,” one must understand the
role played by X*. A misunderstanding of this role largely accounts for
Stanley’s (1991) mistaken belief that estimates of treatment effect in a
regression analysis are biased by treatment-effect interactions.

A misunderstanding of the role played by X* also undergirds another error
in Stanley (1991). In particular, Stanley (1991) mistakenly argues that
Trochim et al. (1991) propose a model containing a “parameter,” T, that
cannot be estimated. Stanley (1991, 615) states his case:

Conventional regression analysis (OLS or any other) cannot be used to estimate Trochim
'ct al.’s model. Mathematically, it is simply not possible to solve for five unknown,
independent parameters from four knowable estimates, Their model offers a true impasse
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for the evaluator. There is no a priori basis on which to infer Te, and yet unknown values
of Tc can mask the true program effects.

Stanley (1991, 619-20) raises the same incorrect criticism again four pages
later:

Trochim et al. add the heretofore unidentified, free parameter, Te, to explain anomalies
found in Monte Carlo simulations. By Popper’s methodology, such an ad hoc auxiliary
hypothesis may be added toasystem only ifits “introduction does not diminish the degree
of falsifiability or testability of the system in question” (Popper 1959, 82-83). The role
of Tc as employed by Trochim et al. is quite the opposite; its purpose is to protect RD
from further Monte Carlo testing. This tactic must be rejected. Even if their explanation
of these simulation anomalies were technically correct, their interpretation serves only
to hinder future progress in understanding this quasi-experimental evaluation design.

These statements are incorrect because, contrary to Stanley’s (1991) asser-
tions, T, is not a parameter and, in any case, it would serve no useful purpose
were it to be estimated. This is because T, in the simulation model in Trochim
et al. (1991) plays the same role as X* in Equation 3 above. Rather than a
parameter to be estimated, X* is a constant specified a priori to be equal to a
given pretest score so as to estimate the average treatment effect at that
pretest score. The bottom line is that regardless of the value chosen for T, in
the simulation model in Trochim et al. (1991), Equation 3 will provide
unbiased estimates of these treatment effects. Therefore, it is not possible that
“unknown values of T, can mask the true program effects,” as Stanley (1991)
mistakenly claims. For the same reasons, itis also not possible that T protects
“RD from further Monte Carlo testing” or that our interpretation of it “serves
only to hinder future progress in understanding this quasi-experimental
evaluation design.” _

To take account of the presumed (but, in fact, imaginary) difficulty that
he believes is introduced by the presence of T, Stanley (1991, 617) proposes
“an entirely different strategy for the statistical test of a treatment effect—one
that does not depend on the unknown T..” In fact, Stanley’s procedure does
not qualify as “entirely different” and only further illustrates his misunder-
standing of the role played by T.. This is because his “entirely different”
procedure is identical to fitting Equation 3 with X* set equal to zero, and then
performing a statistical significance test to determine if the values of B, and
B, are simultaneously equal to zero (which reveals whether or not treatment
effects exist but not their size). Researchers can use this statistical test if they
like, but the procedures for estimating the size (rather than just the presence)
of treatment effects, which we have described both above and in Trochim
et al. (1991), will almost always be more informative.
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Estimating the Effect of the Treatment
at a Given True Pretest Score

. Ina Prcceding section, we explained how to assess the treatment-effect
interaction in terms of the observed pretest scores. It is also possible to assess
the treatment-effect interaction in terms of the true pretest scores. We believe
the f(?rmer is more common and usually more appropriate than the latter for
practical purposes, but the latter is sometimes desired, is relevant to some of
Stanley’s (1991) comments, and so will be discussed in the present section

Asthe preceding sections show, estimates of B, provide unbiased estimate;
of the average effect of the treatment for given pretest scores (given the
appropriate specification of the value of X*) and the estimate of B, provides
an unbiased estimate of the treatment-effect interaction, in terms of observed
pretest scores. Because estimates of treatment effects for observed pretest
scores are the information most often desired (and usually most appropriate
to report), nothing needs to be done to take account of the presence of random
measurement error in the pretest. If a researcher wishes to obtain estimates
of treatment effects in terms of true pretest scores, however, corrections for
the effects of random measurement error in the pretest must be made. The
same correction is required in the RE as in the RDD.

Regardless of the degree of random measurement error in the pretest, the
estimate of B, in Equation 3 remains an asymptotically unbiased estimat,e of
the main effect of the treatment as long as X* is set equal to X. If the variance
of the measurement error in the pretest is constant across the values of the
true pretest score and if p is an unbiased estimate of the reliability of the
p.retest, then B,/p is an asymptotically unbiased estimate of what the regres-
sion slope would be in the comparison group if the pretest contained no
measurement error. In addition, the value of 3,/p would be an asymptotically
unbiased estimate of the value of L if the pretest contained no measurement
error. Finally, the estimate of B, from Equation 3 would be an asymptotically
unbiased estimate of the average treatment effect for individuals with true

pretest score equal to an arbitrary pretest value of W if X* is set equal to X

+ (W - X)/p. Note that these corrections have to be made.in both the RE and
the RDD to get asymptotically unbiased estimates in terms of true pretest
scores, but note that these corrections are seldom made in practice in either
the RDD or the RE because researchers usually prefer estimates of treatment
effects in terms of observed scores.

Using simulations, Stanley and Robinson (1990a) discovered that the
values of 3, and B, can be biased as estimates of treatment effects in terms of
true pretest score, but they did not realize that these biases have the very
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simple and correctable form that we just described. In addition, Stanley and
Robinson (1990a) drew comparisons between the RE and the RDD and
criticized the RDD because the estimates of B, and B, are biased as estimates
of the treatment effect in terms of true pretest scores in the RDD, but they
failed to realize that the same biases are present in the RE. There are many
legitimate reasons to prefer the RE to the RDD, but this is not one of them.

If researchers are to reach appropriate conclusions about treatment effects
in terms of true, rather than observed, pretest scores, adjustments for the
effects of random measurement error in the pretest must be made not only
when fitting Equation 3 but also when generating data in simulations. The
necessary adjustments paraliel those described above. For example, one of
the ways to correct for the effects of measurement error when simulating data
is to make an adjustment to the value of T, in the simulation, just as a
correction was made for the values of X* above. A formula for this correction
is provided in Trochim et al. (1991). Stanley (1991, 611) criticizes this
correction procedure:

It is a great irony that Trochim et al. advocate correcting the true-score centering value,
Te, for the fallibility of the pretest. . . . To correct a population parameter for measure-
ment efror is a revealing conceptual misunderstanding of statistical estimation.

In fact, T, is not a population parameter (as previously explained), correcting
it is quite proper, and the source of the “conceptual misunderstanding” lies
not in Trochim et al, (1991).

CASE 3: CURVILINEAR RELATIONSHIP

In this section, we allow the regression of posttest on pretest scores to be
curvilinear in the population. We also allow for a treatment-effect interaction
that can be curvilinear in the population. This means that, in the population,
the regression of posttest on pretest scores may have a different curvilinear
shape in the treatment condition than in the comparison condition.

Estimating Treatment Effects l

Even though neither Equation 1 nor Equation 3 allows for a curvilinear
regression surface, if X* is set equal to X, the estimate of B, from either
Equation 1 or Equation 3 would be an asymptotically unbiased estimate of
the main effect of the treatment in the RE, although the standard error of the
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estima.ate would be biased. In contrast, the estimate of B, derived from either
Equation 1 or Equation 3 is likely to be an asymptotically biased estimate of
the main effect of the treatment in the RDD. In addition, both estimates of
the average treatment effect at a given pretest score and estimates of the
treatment- interaction effects are likely to be asymptotically biased, in both
the RDD and the RE. To remove these biases, the researcher must properly
take account of the curvilinearity in the regression surfaces. This will not
alwa.nys be an easy task. Therefore, it will not always be easy to obtain
unbiased estimates of the treatment effects in the RDD when the regression
surfaces are curvilinear.

Ore potential way to correct for biases resulting from curvilinearity is to
try to transform the data so that the regression surface is linear in both the
trcatm_cnt and comparison conditions, and then apply either Equation 1 or
Equation 3 to the transformed data (e.g., Hamilton 1992). The most difficult
step in this approach is discovering a formula that will perform the proper
transformation. Unfortunately, there is no mechanical procedure that will
.guara'ntee that the correct formula has been found, especially when curvil-
inearity is produced by sources such as floor and ceiling effects.

Another approach is to add polynomial terms to Equation 1 or Equation 3 so
that the curvilinear regression surface in the untransformed data is modeled
properly (Cappelleri and Trochim 1994). For example, suppose the regression
surface in the comparison condition is quadratic. Further, suppose the effect
of the treatment is quadratic in the pretest scores. That is, suppose the average
effect of the treatment for individuals with pretest scores equal to X is

K+LX +MX? @

where K, L, and M are constants. Then K is the effect of the treatment when
?( =0, and L. and M are the linear and quadratic effects, respectively, of the
interaction of the treatment with the pretest.’ Then quadratic terms could be
added to Equation 3 to produce the following equation:

Y= a+ Bz + BAK - X*) + BZX - XY+ ByX - X2 4 BZX, - X 4. (5)

Under the present conditions, setting the value of X* equal to W would make
the estimate of f, an unbiased estimate of the average treatment effect for a
pretest score equal to W (Johnston 1972). In particular, setting the value of
X* equal to the assignment-cutoff score, C, in a RDD would make the
estimate of 3, an unbiased estimate of the effect of the treatment at the cutoff
score. In addition, regardless of the value chosen for X*, the estimates of B,
and 35 would be unbiased estimates of L and M, respectively, in both the RDD
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and the RE.S If the variance of the posttest scores is the same across levels of
the pretest in both treatment groups, the estimate of P, derived from Equation 5
would be BLU, in both the RE and the RDD. Otherwise, a GLS procedure
would be required for BLUness, in both the RE and the RDD. All these
results hold regardless of the degree of random measurement error in the
pretest.

If the regression surfaces were cubic rather than quadratic, Equation 5
would need to contain additional (cubic) terms if unbiased estimates of the
effects of the treatment were to be produced. In theory, any curvilinear
regression surface could be properly modeled if enough polynomial terms
were added. In practice, polynomial regression can fail for two reasons. First,
an infinite number of polynomial terms is required to perfectly fit some
curvilinear shapes (such as might be caused by floor or ceiling effect, for
example). Second, adding even a few polynomial terms can greatly increase
multicollinearity, which can make the regression estimates unstable. In fact,
just adding quadratic terms might greatly increase the sample size that is
needed to obtain stable estimates in Equation 5, as compared to Equation 3.

Correctly Modeling Curvilinearity

'How does the researcher know if the regression surfaces have been
modeled correctly so that the estimates of the effects of the treatment are
unbiased? This is a critical question, and it is especially difficult to answer in
the RDD. In the RE, the available data cover the complete range of pretest
scores in both the treatment and comparison conditions. In contrast, because
of the way individuals are assigned to treatments in the RDD on the basis of
the assignment-cutoff score, the available data cover only a limited range of
pretest scores in each of the treatment and comparison conditions. This will
generally make guessing, tentative modeling, and subsequent checking of the
correct form for the regression surfaces much more difficult in the RDD than
in the RE. In addition, it will be much more difficult to distinguish curvilinear
regression surfaces from interactions in the RDD than in the RE. (Because
bias can increase with increasing extrapolation, the difficulty of modeling
curvilinearity provides another reason for preferring, in the RDD, the esti-
mate of the effect of the treatment at the assignment-cutoff score to the
estimate of the effect of the treatment at any other pretest score.)

To help in assessing and modeling curvilinearity in the regression
surfaces, Trochim et al. (1991) suggested plotting the data using moving
averages. Stanley (1991, 621) takes issue with this technique:

S nedideDaesns
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The method of moving averages used by Trochim et al. (1991) to uncover nonlinearities
is not likely to be useful in practice. First, it is a data “hog.” They used 10,000
observations and moving averages of 100 data points to show how uniform true scores
will distort the X-Y relationship. When most practical applications have 50 to 100 or so
observations, it is unlikely that moving averages will be a very powerful tool in detecting
any nonlinearity. Second, what is the appropriate statistical test? . . . Surely, Trochim
et al. (1991) do not recommend that the evaluator use moving average data in the
regression analysis of RD. To do so would induce yet another well-known regression
misspecification, serial dependence (or autocorrelation).

Stanley’s (1991) concerns are misplaced. First, Trochim et al. (1991) neither
recommend nor imply that moving average data be included in the regression
analysis to estimate treatment effects in the RDD. In fact, we see no benefit
to doing so. Instead, moving averages are to be used only in drawing pictures
so as to make the nature of any curvilinearity easier to discern. Second, alarge
number of data points is not required to use moving averages. Trochim et al.
(1991) used 10,000 data points in an example only so that there would be no
uncertainty about the shape of the population distribution. In practice, moving
averages can be used with virtually any size data set. For example, we would
not hesitate to apply the method with only 50 data points. Third, although
formal statistical tests could be applied, simple observation and common
sense will generally be more useful than a hypothesis test in assessing the
nature of any curvilinearity that is present.

Trochim and colleagues (Trochim 1984; Trochim, Cappelleri, and
Reichardt 1991; Cappelleri and Trochim 1994) provide other suggestions for
discerning and modeling the correct shape of the regression surfaces, in both
the RE and the RDD. Interested readers are directed to these references.

Sources of Curvilinearity

Curvilinearity in a regression surface can arise from many sources. Cur-
vilinearity can arise either because the “true” relationship between two
variables is curvilinear or because a relationship that is “truly” linear is made
curvilinear by floor or ceiling effects. Curvilinearity in the regression of
posttest on pretest scores may (or may not) also arise because of random
measurement error in the pretest. For example, suppose that Y and T are both
distributed normally and that the regression of Y on T is linear. In this case,
adding normally distributed, random measurement error to T s0 as to create
X scores will attenuate the regression of Y on X as compared to the regression
of Y on T, but the regression surface will remain linear. If the distribution of
the T scores and the distribution of the random measurement error that is
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added to the T scores to create the X scores are not from the same family (e.g.,
one is normally and the other is uniformly distributed), the regression of Y
on X can become curvilinear (Cochran 1970).

In their simulations of the RDD, Stanley and Robinson (1990a) used a
uniform distribution for the true pretest scores and a normal distribution for
the random measurement error in the pretest. As a result, the regression of
the posttest on pretest scores, which was linear in the true scores, became
curvilinear in the observed scores. Stanley and Robinson (1990a) did not
realize that their simulation had produced a curvilinear regression surface in
the observed scores, fit a regression model like Equation 3 that did not allow
for the presence of curvilinearity, found that the estimates of the treatment
effects in the RDD were biased, and attributed the source of the bias to the
presence of random measurement error per se rather than to the presence of
curvilinearity.

Asimilar misattribution arose in a well-known article by Campbell (1969).
In that article, Campbell reported the results of a simulation in which the true
pretest scores were distributed uniformly, whereas the random measurement
error was distributed normally. This produced curvilinearity in the regression
surfaces, a bias in the estimate of the treatment effect because a regression
model assuming linear regression surfaces was fit to the data, and the
conclusion that something new (and as yet unknown) must be wrong with
the OLS regression as applied to data from the RDD. This misattribution was
corrected in subsequent reprinting (e.g., Campbell 1971, 1983), after
Campbell (1984, 20) realized that these biases were simply “‘another example
of the subtle effects of overlooking slight degrees of curvilinearity.”

Like Campbell (1969), Stanley and Robinson (1990a) thought that they
had discovered a new source of bias in the regression analysis of data from
the RDD. In fact, they had merely demonstrated what had long been well
known; namely, that fitting a linear model to curvilinear data can produce a
bias in the RDD (Cook and Campbell 1979; Reichardt 1979; Rubin 1977,
Trochim 1984). One of the explicit purposes of Trochim et al. (1991) was to
demonstrate visually how curvilinearity can be caused by random measure-
ment error in the pretest and to describe the potential biases that can thereby
arise in the RDD, 50 as to remove the repeated misunderstandings of this issue
that have occurred. Apparently, we were not completely successful, because
in his reaction to Trochim et al. (1991), Stanley (1991) still appears not to
understand the source of the bias. In addition, Stanley is wrong when he
claims that:

To protect RD from potential specification bias, Trochim et al. wish to prohibit the use
of uniform true scores in Monte Carlo simulation. (p. 607)
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In fact, Trochim has no rational basis on which to restrict the simulator’s choice of a
true-score distribution to the normal or any other specific distribution. (p. 608)

Trochim et al. (1991) do not place restrictions on the use of uniform, or any
other, distributions in simulations: We encourage simulators to use whatever
distributions they believe are appropriate. All we were attempting to curtail
were misunderstandings of the conditions under which random measurement
error does and does not introduce bias.

Although it is important to recognize that curvilinearity can arise because
of random measurement error, we suspect that curvilinearity produced by
random measurement error is likely to be small relative to the curvilinearity
that arises from other sources. For example, we suspect that far more
curvilinearity arises from curvilinearity in the relationship between true
scores or from floor or ceiling effects than from random measurement error.

ALTERNATIVES TO REGRESSION ANALYSIS

We wholeheartedly concur with Stanley’s (1991, 619) conclusion that
“progress only occurs when we uncover anomalies or problems in simula-
tions (or elsewhere) and as a result construct new methods that remedy these
difficulties.” Two processes are implicit in this statement: uncovering prob-
lems and constructing new methods. Below we address additional claims that
Stanley (1991) makes about regression analysis, with reference to each of
these two steps. .

First, to make progress you have to “uncover anomalies or problems.” The
bigger the problem, the greater is the potential for advance, but if you
misattribute the source of a difficulty, you may be trying to solve a problem
that does not exist. In this vein, Stanley (1991, 609) argues that OLS
regression analysis is inappropriate if measurement error is present in an
independent or explanatory variable (such as the pretest in RDD) because
measurement error makes the variable stochastic:

Classical regression analysis requires that the independent variable be nonstochastic, that
is, fixed or known. . . . However, with measurement error, the explanatory variables are
no longer fixed or known, and regression analysis is no longer appropriate.

This is simply not true. For simplicity, introductory chapters in econometric
texts, for example, often begin by assuming that the explanatory variables in
regression analysis are fixed. This assumption is quickly dropped in later
chapters, where it is demonstrated that regression analysis applies equally

JL




58 EVALUATION REVIEW / FEBRUARY 1995

well with stochastic explanatory variables (Johnston 1972, 29-32 and 274-7;
Goldberger 1964, 266-72; Kmenta 1971, section 3.3). In other words, just
because a regression model includes explanatory variables that are stochastic
does not make regression analysis inappropriate either for the RE or the RDD.
Indeed, the vast majority of regression analyses involve stochastic explana-
tory variables because the vast majority of regression analyses include
independent variables that contain measurement error.

Stanley (1991, 620) also argues that regression analysis requires bivariate
normal distributions:

For example, the estimation of RD using OLS may well lead to biased program
assessments because the real world is not necessarily normal. To protect the evaluator
from the statistical artifact that RD contains in the presence of nonnormal true score, a
caveat should be added to its application. That is, RD may be safely applied only if the
pretest/posttest distribution may be adequately described by the bivariate normal,

In fact, the use of regression analysis in the RDD does not require that the
pretest/posttest distribution be bivariate normal (Johnston 1972; Kmenta
1971; Theil 1971). The results on bias that have been presented in this article
hold under the conditions stated herein without further restrictions on the
shape of the distributions, and nowhere has this article specified that the
distributions must be bivariate normal. Additional restrictions are required,
however, if hypothesis tests and confidence intervals are to be exactly valid,
although the procedures will be approximately valid under a much wider
range of conditions. Even the exact validity of hypothesis tests and confi-
dence intervals does not require bivariate normality. Neither the pretest nor
the posttest scores need be distributed normally; all that is required for the
exact validity of hypothesis tests and confidence intervals is that the residuals
in the model be normally distributed. The central limit theorem furthermore
implies that hypothesis tests and confidence intervals can be approximately
valid even when the distributions of the residuals deviate from normality. The
analysis of covariance, however, is more sensitive than the analysis of
variance to violations of the assumption that the residuals are normally
distributed (Atiqullah 1964; Elashoff 1969; Glass, Peckham, and Sanders
1972).

Second, to make progress you have to “construct new methods that
remedy” the difficulties that are discovered. Stanley (1991) cites, with
approval, a technique proposed by Robbins and Zhang (1988, 1989, 1990)
and states (Stanley 1991, 618) that the Robbins and Zhang method not only
“holds great promise” but “escapes all of the difficulties we have discussed.”
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Although we strongly support further examination of the method proposed
by Robbins and Zhang (as well as other methods), the Robbins and Zhang
method is as yet largely untested, and we would be surprised if it too did not
have limitations and weaknesses. Along this line, it could also be of benefit
to consider solving some of the analytical problems of the RDD by elaborat-
ing the design or by combining the RDD with the RE. In this regard,
Cappelleri and Trochim (1994), Trochim (1984, 1990), Trochimet al. (1951),
and Trochim and Cappelleri (1992) offer a number of useful suggestions.
Rubin (1977) also provides useful analytic results.

CONCLUSIONS

With data from an RE, asymptotically unbiased estimates of the effects of
the treatment can be obtained with regression analysis even if the researcher
cannot correctly model the shape of the regression of the posttest on the
pretest. In contrast, with data from an RDD, asymptotically unbiased esti-
mates of the effects of the treatment are unlikely to be obtained with
regression analysis unless the researcher correctly models the shape of the
regression of the posttest on the pretest. Unfortunately, it is not always easy
to model correctly the shape of the regression surface. In addition, even when
the regression surface is correctly modeled, treatment effects can be estimated
with greater precision in the RE than in the RDD.

On the other hand, the RDD may be feasible in instances in which the RE
is not because of either ethical or practical constraints. In addition, the RDD
may be less susceptible than the RE to threats to validity such as differential
attrition, resentful demoralization (e.g., Fetterman 1982), and compensatory
rivalry (Cook and Campbell 1979). As a result, circumstances may arise in
which the RDD is preferable to the RE, in spite of the relative weaknesses
that have been discussed in this article.

Stanley (1991; Stanley and Robinson 1990a, 1990b) argues that random
measurement error and treatment-effect interactions are sources of bias in the
regression analysis of data from the RDD. In addition, Stanley (1991, 621)
argues that these biases are so severe that “we might be better off to remove
the ‘regression’ from regression-discontinuity design.” In contrast, we (and
others such as Cook and Campbell [1979] and Rubin [1977]) believe that
curvilinearity is a more serious source of difficulty for the regression analysis
of data from the RDD than either random measurement error in the pretest
or treatment-effect interactions. In the absence of curvilinearity, unbiased
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estimates of the treatment effect are easily obtained via regression analysis,
whether or not there is random measurement error in the pretest or treatment-
effect interactions. In addition, in the absence of curvilinearity, it may be quite
difficult to create estimates of treatment effects in the RDD that are more
precise than the estimates derived from regression analysis. When curvil-
inearity is present, however, estimates of the treatment effects in the RDD
may be biased because of difficulties in modeling the shape of the
regression surface, as we have consistently maintained. With this in mind,
the flaws in regression analysis that Stanley (1991) reports are greatly
exaggerated.

NOTES

1. Alternatively, the Z variable could be coded so that 1 denotes the treatment group and -1
denotes the comparison group. Using 1 and -1 rather than 1 and 0 as in the text, however, would
alter the estimate the treatment effect (i.c., the estimate of B1) and its standard error by a factor
of 0.5. This means that a researcher using 1 and -1 coding would have to multiply the estimate
of B1 and its standard error by 2 to obtain the same results as would be obtained if 1 and 0 coding
were used, as is being assumed.

2. In addition, if the distribution of the posttest were normal at all levels of the pretest, either
OLS or GLS regression would produce treatment effect estimates that had the minimum variance
among the class of all possible—not just linear—unbiased estimators (Johnston 1972, 210).

3. In addition, the estimate of the main effect of the treatment would need to be interpreted
in the light of a treatment-effect interaction,

4. One could make K equal to the main effect of the treatment by altering Equation 4 to be
K+ L(X-px)+ M()(2 =), where ' = ZXZIN. which is the mean of the square of the pretest
scores (not the square of the mean) in the population.

5. Bstimating the main effect of the treatment would require the following, alternative
formulation of Equation 5:

Y= o+ BZ+ By~ X*) + B2 (X, - X*) + By(X7 - X**) + BZ(X} ~ X*¥) +¢,

Then setting X* equal to X, which is the mean of the pretest scores in the sample, and setting
X** equal to £X%/n, which is the mean of the square of the pretest scores (not the square of the
mean) in the sample, the estimate of B; would be an asymptotically unbiased estimate of the
main effect of the treatment, in both the RDD and the RE.

6. Itis ironic that the body of Stanley’s (1991) article casts Trochim et al. (1991) as inhibiting
rather than promoting the consideration of new methods, given that in a footnote Stanley (1991,
622) thanks “Professor Trochim for bringing [the Robbins and Zhang] references to my
attention.”
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