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ABSTRACT. Computer simulations in human service research are
useful for (1) improving student understanding of basic research
principles and analytic techniques, and (2) investigating the effects
of problems which arise in the implementation of research. This
paper describes these uses of simulations for the context of human
service program evaluation. Simple mathematical models are de-
scribed for the three most commonly used human service outcome
evaluation designs-—the pretest-posttest randomized experiment, the
pretest-posttest nonequivalent groups design, and the regression-
discontinuity design. The models are translated into a single com-
puter program which can be used to conduct the simulations, and
examples of the use of this program are provided. The paper
concludes that simulations need to utilize experimental design
principles when rigorous, definitive results are desired, but that,
even when this is not possible or desirable, simulations may have
great potential value as an exploratory or teaching tool in human
service research.

Imagine the teacher faced with the difficulties of explaining
evaluation design to a class of human service students. The teacher
has no problem in conveying the importance of defining the
evaluation question, understanding the political context of the
study, or involving different stakeholder groups in the research
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process. But when faced with the more formidable “‘technical”’ sidc
of the evaluation process—the construction of measures, the choice
of sampling plan, the selection of a research design, and the analysis
of the data—the class becomes lost in the complexities of the
material. How can the tcacher convey the logic behind an Anatysis
of Covariance or a pretest-posttest nonequivalent group design in a
way which is understandable to the students?

Or. imagine the human service evaluator who is in the proces . of

supervising a program evaluation. A number of problems. part v
or entirely unanticipated are beginning to arise. The evaluator i+ not
sure whether all program participants are attending the program or
cven whether the program is being carried out in a similar way for
all participants. Several of the measures for a small subgroup have
been lost and the evaluator is having a hard time getting comparison
group persons to come back to the agency for posttest measurement.
In fact. the evaluator is not even very confident that the program and
comparison groups were rcally ‘comparable™ to begin with. How
can this evaluator examine what the likely effects of so - U these
problems might be on the final results? '

Computer simulation is a tool which can help
tcacher and evaluator address these types of
simulation., the analyst first creates data according to a» vl
and then examines how well the model can be detect - -~ ata
analysis. The teacher can show student that me:- <
pling. design and analysis issues are dependent on the model which
is assessed. Students can dircctly manipulate the simulation model
and *“‘try things out’” to scc immediately how results change and
how analyses are affected. The cvaluator can construct models of
cvaluation problems—making assumptions about the extent or kind
of attrition, group noncquivalence or program implementation—and
sce whether the results of any data analyses are seriously distorted.

Simulations arc better for some purposes than the analysis of
“real’” data. With “‘real’” data. the analyst never perfectly knows
the real-world processes which caused the particular observed
values to occur. In a simulation, the analyst controls all of the
factors which make up the data and can manipulate thesc system-
atically to see directly how specific problems and assumptions affect
the analysis. Simulations also have some advantages over abstract
theorizing about rescarch issues. They enable the analyst to come
into direct contact with the assumptions which are made and to
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develop a concrete **feel’” for their implications on different anal-
ysis techniques.

Simulations have been widely used in contemporary social
research (Guetzkow, 1962; Bradley, 1977; Heckman, 1981). They
have been used in human service contexts, but to a much less degree
(Mandeville, 1978; Raffcld, Stamman and Powell, 1979; Mandell
and Blair, 1980). Most of this work has been confined to the more
technical literatures in these fields.

The purpose of this paper is to explain and illustrate some basic
principles of computer simulation and show how simulations may
be used to improve the work of human service teachers and
evaluators. The discussion will focus on a specific type of simula-
tion context—the human service program or outcome evaluation.
The paper will describe the three most commonly used human
service program evaluation designs, present a microcomputer pro-
gram for simulating these designs, and discuss the use of this
program in human service teaching and the study of evaluation
implementation.

THE SIMULATION MODELS

In the human services we are often interested in evaluating the
effects of outcomes of some programs. In education, the program
might consist of compensatory training in mathematics for grade
school children. In criminal justice it might be a novel diversion
program for first-time offcnders. In mental health, it might be a
unique combination of services designed to aid recently dein-
stitutionalized clients. '

Whatever the program, the evaluator will typically need to select
one of three major strategies or designs for conducting the evalua-
tion. All three designs, in their simplest forms, involve pre and
post-program measurement of both program and comparison group
participants. The threc designs differ in the way in which persons
arc assigned to participate in the program. In the randomized
experimental (RE) design, persons are randomly assigned to either
the program or comparison group. In the regression-discontinuity
(RD) design (Trochim, 1984), all persons who score on one side of
a chosen preprogram measure cutoff value are assigned to one
group, with the remaining persons being assigned to the other. In
the noncquivalent group design (NEGD) (Cook and Campbell,
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1979: Reichardt, 1979), persons or intact groups (c.g.. classes,
wards, jails) are “‘arbitrarily’ assigned to either the program or
comparison condition. These designs have been used extensively in
human service evaluations where one is interested in deteinining
whether the program had an effect on one or morc outcome
measures. The technical literature on these designs is extensive (see.
for instance, Cook and Campbell, 1979; Trochim. 1986) and a
discussion of their relative advantages is outside the scope of this
paper. The general wisdom is that if one is intercsted in establishing
a causal relationship (e.g.. in.internal validity), RE designs are most
preferred. the RD design (because of its clear assignnw it-by-cutoff
rule) is next in order of preference, and the NEGD s least
preferable.

All three of the program evaluation designs (R 20 aad NG

have a similar structure which can be described as fviiows:
Program
Group: Pretest—> Program—— Fosiicnd
Comparison
Group: Pretest -> . Postiest

The program group and comparison group are represented on
separate lines and passage of time is indicated by movement from
left to right in the diagram. Thus, the program group is given a
pre-program measure (often termed the **pretest’’), is then given the
program, and afterward is given the post-program mcasure (post-
test). The vertical sinmilarity in the measurement structure implies
that both the pre and post measures are given to both groups at the
same time. To simulate the designs, we begin by constructing a
model for cach one. The model specifies the structure of the pretest,
the strategy for assigning persons to program or comparison group,
the size of the program effect, and the structure of the posttest. In
the following sections we provide a simple model for each of the
three designs.

The RE Model

To construct the model for the RE design we begin with the
assumption that the preprogram measure, X, is the additive function
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of two components—a true score, t, and a random error factor e,
such that

X =t + e

For cach case (or hypothetical person) we randomly generate both
t and ¢, and add these together to create the pretest. Next, a variable,
z. which describes group membership (i.e., program or comparison)
is constructed such that

z=1ifr=0
0 otherwise

I

where

z is a (0,1) dummy-coded assignment variable
r is a normal random variable and is independent of all
other terms

To accompish this, we simply generate for each new case a new
random variable, r, which is normally distributed with a mean equal
to 0 and some standard deviation. Then the case is assigned to the
program (z = 1) or comparison (z = 0) group according to the
above rule. Finally, we construct the post-program measure, y, such
that for each case

y =t+e, + (g2)
where

y is the post-program measure

t is the same true score as used for the pretest

¢, is a normal random variable and is independent of all
other terms ‘

g is the program effect size

7. is group membership as defined above

For cach case, the post-measure is an additive composite of the
same true ability (t) as in the pre-measure, an independent error (ey)
and an effect size (gz). It is important to note that the effect (g) is
only added to program group cases when comparison group cases
z = 0 and the product gz therefore also equals 0.
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The NEGD Model

In the nonecquivalent group design we assign person: ©: u0its to
conditions nonrandomliy. As a result, we cxpect thai the 'wo prowps
may differ systematically in ability as reflected in the meusures M,
for instance. two classrooms or hospital units are wibitrarily s
signed to receive the program or not, it is plausible to aesume that
the two groups will, on average. differ to some degree on both the
pre and post mecasurc. cven in the absence of the m wan =
simulations, we can deliberately create such noncquivaicie by
adding some constant value to both the pre and post measure for one
of the groups. Thercfore, to construct the model for this design we
first nced to create the group assignment variable, z, in the same
way as for the RE design

72 Litr- 0O
= () otherwise

where ris a normal random variable as defined before. Once this is
accomplished. we can create the pre-program measure, x, such that
for cach case -

X =1+ ¢ + (d7)

where s a true score and ¢ is a random crror factor. Here, dis a
constant which is added to the program group (note that it can be
cither positive or negative depending upon whether one wishes the
program group to be ‘‘advantaged’” or ‘*disadvantaged,’” relative to
the comparison cases) through multiplication with the (0,1) dummy-
coded group assignment variable. The post-measure, y, is con-
structed for cach case, such that

y=1t+
=t+
where
y is the post-program measurc
t is the same true score as for the pretest
e, is a normal random variable and is independent of all
other terms
d is a constant representing group noncquivalence as
used for the pretest
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g is the program effect size
z is the (0,1) group membership indicator

The RD Model

The model for the RD design can be constructed by beginning
with the pre-measure, x, such that for each case

X =t + e
where the pre-program measure X is again the additive function of a
true score, t, and a random error factor, ¢,. Next, the group

membership variable, z, can be constructed for each case such that

7z = 1 if x = (cutoff value)
0 otherwisc

il

There arc two important points to note. First, one must select a cutoff
value on the pre-measure. Second, the RD design requires that either
low or high scorers be assigned to the program group depending on
the nature of the evaluation. If the program involves special training
in mathematics which should be given to ‘‘needy’’ students and the
pre-mcasure is an indicator of prior math ability (where low scores
indicate poor math performance) then all students scoring below
some pre-measure cutoff value would be given the program (as in the
above formula which would be appropriate for this *‘compensatory’”
situation). However, if the program involves a novel surgical tech-
nique which should only be piloted on the most needy cases and the
pre-measure is an indicator of the severity of illness (where high
scores indicate the greatest need) persons with pre-measure scores
above some value would be assigned to the program and the formula
above would need to be adjusted accordingly.

Finally, the post-program measure, y, is constructed for each
case such that

y =t+e, + (gz)

which is an identical formula to the one used for the RE design but
differs significantly in that the definition of z, the group member-
ship indicator, is a cutoff-based rather than random assignment
indicator.
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Summary of Model Building Procedures

All three designs have the same structure in that for cach a
pre-program. post-program, and treatment (dummy variablc) mea-
sure is created. However, the models presented above show that the
designs differ considerably in how these three terms are constructed.
In the next section these three models will be translated into a single
computer program which will be used for simulations.

THE SIMULATION PROGRAM

The models for the three designs can be efficiently simulated with
a single computer program. This is illustrated here with a program
written in the MINITAB statistical computing system (Ryan, Joiner
and Ryan, 1982)" shown in Appendix A. The first section of the
“program involves the specification of six constants (K1-K6) which
define the parameters for the simulation. By changing the valucs of
these constants, one can alter the size of the program effect, the
degree of nonequivalence (in the NEGD), the reliability of the
measures, and the sample size. The random variables which are
needed for all three models (t, e,, ¢, and r) are generated in four
“‘nran’” statements. The next few sections on the listing describe the
construction of the x, y, and z variables for the three models. Note
that in the sample program a premcasure cutoff value of 0 was
chosen for the RD design. Table | lists the MINITAB variables and
variable names which correspond to the pretest (x), group assign-
ment (z) and posttest (y) for the three models. For cach model, the
program then prints out the group means and standard deviations.
Next, bivariate plots are constructed for each model (on output, the
letter A indicates a program case; the letter Z indicates a comparison
one; a number indicates the number of cases which fall on the same
point; and, an * indicates that more than nine cases fall on the same
spot). All three designs are analyzed using the same Ausaiysis of
Covariance (ANCOV A) regression model:?

Y, = b() + b|Xi + bZZi + ¢

Y = posttest score for case (i.e., person® :
constant or interccpt parameter

g
I
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=4
!

= linear slope of y on x parameter
pretest score for case i

program effect parameter

group assignment for case i

¢; = residual for case i

o >
Nl
non

N
I

|

In each analysis, the three estimated parameters, by, by, and b,, are
saved and the key estimate, b,, the estimate of the program effect,
is stored in a new variable. These results are cumulated over
successive runs of the simulation.

The program can be exccuted interactively by typing each
command as presented in Appendix A (note that commands which
begin with # arc comments and need not be typed. Alternatively,
thc program can be stored in a standard system file and executed n
times using the MINITAB command

cxccute ‘filename’ n
All examples presented here were run on an IBM PC/XT micro-

computer equipped with an 8087 math co-processor chip.

Table 1
Index of NINITAB variables and variable names
for the RE, NEGD and RD Nodels

RE NEGD RD
Variable Variable Variable
and and and
—Name ~Nane —Name
pretest (x) Ccs Cl0 CcS
x1-RE-RD x-NE x-RE-RD
group (2z) - C6 cé [~ }
z-RE-NE 2-RE-NE s-RD
posttest (y) c7 Cl1 c9
y-RE y-NE y-RD

1This is the x variable for the randomized experiment and regression
discontinuity designs.

i
g
:
i
H
i
f]
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SIMULATION APPLICATIONS AND VARIATIONS

There are a number of ways in which the simulations described
here (and simple variations of the program given above) can be
useful in human service program cvaluation contexts. Fust, they
provide a powerful teaching tool (Eamon, 1980, I.chman, 1980).
Students of human service program ecvaluation can cxplore the
relative advantages of these designs under a wide vartety of
conditions. In addition, the simulations show the student exactly
how an analysis of these designs could be accomplished using real
data. Second, the simulations provide a way to examine the possible
cffects of evaluation implementation problems on estimates of
program effect (Trochim and Spiegelman, 1980; Trochim, 1982;
Muthen and Joreskog, 1984). Just as NASA cxplores difficultics in
a space shuttle flight using an on-ground shuttle simulator, the data
analyst can examine the possible effects of attrition rates, floor or
ceiling measurement patterns, and other implementation factors on
the size of the program effect.

Applications for Teaching

To illustrate the utility of the simulation program for teaching,
two example simulations were run. The first shows how the three
designs perform when measurcment is highly reliable while the
sccond illustrates what happens when the measures are low in
rchiability.

For the ‘‘high reliability’’ example, the program citect for all
models was 5 points, the NEGD program gre:ip had o three-point
“‘advantage’’ (i.e.. was noncquivalent and advantaved on nrz end
post measures), the pre-measure cutoff value was zero tor the RD
design, the reliability of the measures was equal to .4 {see below)
and there were 100 cases in each of the 50 runs. in the “‘low
reliability’” example, all simulation parameters remained the saume
except that the reliability of the measures was .5, considerably
lower than before.

The reliability of the measures was set by varying the relative size
of the standard deviations of the truc and crror scores. Reliability is
defined as

rel = var (t)

var(t) + var(e)
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Therefore, if we set K3 in the program (standard deviation of the
truc scores) equal to 3 and K4 (standard deviation of the crror
scores) cqual to |, we obtain the reliability

rel = 32
32+ 12

= 9

10

= .9

for the first *‘high reliability’” simulations. In the second ‘“‘low
reliability’” simulations, we set K3 = 3 and K4 = 3 and thereby
obtain

rel = 3?2

32 + 32

18

for the reliability of the measures.

The cumulative results for 50 runs for these two simulation
examples arc shown in Table 2.The results illustrate some important
methodological principles. First, both the RE and RD designs yield
unbiased estimates. In general, we would consider estimates to be
unbiased if the average gain does not differ positively or negatively
by more than two standard error units from the true gain (i.e., a .05
significance level where the gain, g, falls within the interval
b, * 2SE,,). For instance, for the RE design, low reliability
simulations, the average gain is 4.89 and the standard error is .081.
Therefore, the true gain, 5 points, falls within the interval 4.89 *
2(.081) and the RE design can be considered unbiased for these
conditions. Second, the NEGD is shown to yield biased estimates of
effect for both low and high reliability simulations. This is consis-
tent with the literaturc on this design (Reichardt, 1979), which
maintains that the ANCOVA analysis will yield biased estimates of
effect when the pretest is not perfectly measured (i.e., there is
measurement error on the pretest). Finally, the results show that the
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Table 2
Simulation Results for the Basic Program

(true gain=5.0, 50 runs, n=100 per run)

by SE (b3) min (by) max (bj)

High
Relia- RE 4.97)3 041 4.251

. . . 5.578
bility NEGD 5.252 044w 4.448 5.884
(.9) RD 5.032 .066 3.702 5.951
Low
Relia- RE 4.890 081 3.663

. . . 6.
bility NEGD 6.344 <094 4.%21 7.;‘3,;
(.5) RD 5.030 .180 2.280 7.870

* Significance of coefficient is determined by its val fal
outside of the range of 2 standard errors (bzyz 2s!b;)?. slling

dpsigns differ in cfficiency. For both the high and le.v . “ability
simulations the RE and NEGD have similar star - - fohe
average gain, whereas the RD design standard ¢

ably larger. This also is consistent with the literaw.
(1972), for instance, demonstrated that, all things be-
RD design requires 2.75 times the number of cases

in order to have the same relative efficiency.

How can simulations of this type be useful for €aciuig - 20ut
h_uman service program cvaluations? First, students can observe the
§|mulalion program as it is exccuting on the computer and get an
lc.ica of how a real data analysis might look. In addition, the
simulation presents the same information in a number of ways. The
student can come to a better understanding of the relationships
between within-group pretest and posttest means and standard
dev?ations. bivariate plots of pre and post measures which also
dgplct group membership, and the results of the ANCOVA regres-
sion analyses. Sccond, the simulations clearly demonstrate the
pmbabilistic foundations of hypothesis testing in this context. For
instance, the results shown in Table 2 illustrate that cven with
measures which are fairly reliable, onc will sometimes obtain
estimates of cffect which are ncar the true value (even when the
analysis yields biased results on average, as with the NEGD) or
estimates which differ considerably from the true value (even when
the analysis yields unbiased estimates on average). To demnonstrate

alg

ign
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these notions even more directly, the student can display for each
design the histograms of the estimates of effect across a number of
simulation runs. Third, the simulations illustrate clearly some of the
key assumptions which are made in these designs and allow the
student to examine what would happen if these assumptions are
violated. For instance, the simulations are based on the assumption
that within-group pre-post slopes are linear and that the slopes are
cqual between groups. The effects of allowing the true models to
have treatment interaction terms or nonlinear relationships can be
examined directly with small modifications to the simulation pro-
gram as Trochim (1984) illustrated for the RD design. Fourth, the
simulations demonstrate the importance of reliable measurcment.
By varying the ratio of true score and error term variances, the
student can directly manipulate reliability and show that estimates of
effect become less efficient as measures become less reliable.
Finally, simulations are an cxcellent way to illustrate that apparently
sensible analytic procedures can yield biased estimates under certain
conditions. This is shown most clearly in the simulations reported in
Table 2 for the NEGD. While the apparent similarity between
design structures of the RE and NEGD might suggest that traditional
ANCOVA regression models are appropriate, the simulations
clearly show this to be false and thereby confirm the statistical
literature in this area (Reichardt, 1979).

Applications for the Study of Design Implementation

The validity of estimates from the three designs described here
depends on how well they are executed or implemented in the field.
There are many implementation problems which occur in typical
human service program cvaluations—attrition problems, data cod-
ing errors, floor and ceiling effects on measures, poor program
implementation, and so on—which degrade the theoretical quality
of these designs (Trochim, 1984). Clearly, there is a need for
improved evaluation quality control (Trochim and Visco, 1985), but
when implementation problems cannot be contained, it is important
for the analyst to cxamine the potential effects of such problems on
estimates of program gains. This application of simulations’ is
analogous to simulation studics which NASA conducts to try to
determine the effects of problems in the functioning of the space
shuttle or a communications satellite. There, an exact duplicate of
the shuttle or satellite is used to try to recreate the problem and

e
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explore potential solutions. In a similar way, the program ¢valuator
can attempt to recreate attrition patterns or measureiment difficuitios
to examine their effccts on the analysis and attempt to discover
analvtic corrections which may minimize these effects.

The simulation program is tllustrated using examples ol two
common evaluation implementation problems. The first example
looks at what happens to estimates of program effect when there is
attrition from the study. The second cxample examines measure-
ment ceiling effects and their consequences.

For our first example. the modelling of attrition patterns, we need
to make assumptions about what causes attrition in the «.atext at
hand. Here, we will make a rather simple assumption for-purposes
of illustration: that persons (or cases) who are low in true ability on
prc and post measures arc the most likely attrition cases This mioht
be the case in educational contexts where it may be the iowest
ability students who are lacking motivation or are crratic in
attendance and therefore are excluded from the data analysis for
want of cither a pre or post program score. Similarly, in health or
mental health contexts it may be the most needy or the most severely
il who contribute most to the attrition rate. We can operationalize
this attrition assumption in a somewhat crude way by excluding all
cases in the simulation which have true scores (i.c., true ability)
lower than some chosen value. In these simulations, the attrition
model was accomplished with the addition of the following program
statcment immediately after the random generation of the true
SCOres:

recode — 100 — 1.5 Cl ¥’ ClI

This command assigns the MINITAB missing value code to all the
cases that have a true score lower than 1.5, The sclection of —1.5
is arbitrary herc and was chosen to allow enough attrition to be
detectable in this example. These cases are subsequently removed
from the analysis. As in the previous example. all three models were
simulated for both low and high reliability measurement. The
average estimates of cffect. standard errors and minimum and
maximum cstimates are shown in Table 3.

The results suggest several lessons. As in the previous simula-
tion. the RE design appears to yicld unbiased estimates for both high
and low rehiability conditions. Although the attrition pattern is
systematic with respect to true ability (and is therefore correlated
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Table 23
simulation Results for the Attrition Model

(true gain=5.0, 50 runs, n=100 per run before attrition)

by 8E (b3) min (b3) max (b3)

High

Relia- RE 5.074 .052 4.400 5.873
bility NEGD 5.608 .038¢ 4.713 6.610
(.9) RD 5.202 .074¢ 3.902 6.654
Low

Relia- RE 4.899 .130 2.819 7.087
bility NEGD 6.888 .125 4.636 8.821
(.5) RD 5.310 .180 2.990 7.970

* Significance of coefficient is determined by its value falling
cutside of the range of 2 standard errors (by + 25Ep3).

with both the pre and post measures) it is random with respect to the
assignment variable, r. The NEGD clearly yields biased cstimatces,
and these arc even more biased than in the previous non-attrition
simulations. The RD design is clearly biased under the high
rcliability model and is marginally biased for the low reliability
condition. This suggests that a greater number of simulation runs (or
a larger n for cach run) might indicate that the RD design generally
yields biased estimates under this attrition model. This example
clearly shows the advantage of the RE design when attrition is
corrclated with true ability and is not differential between groups.

The second example of the use of simulations for investigating
implementing problems involves the construction of a ceiling effect
on the post-program measures for all three designs. A ceiling effect
occurs when a measure is unable to discriminate between the ability
levels of persons who do well on the test. When a test is too easy,
for instance, many respondents may achieve perfect or near-perfect
scores. The scores cannot be considered accurate indicators of their
relative ability because, if the test were harder, some respondents
would outscore others at this upper level. The problem is especially
troubling when it occurs on a post-program measure which is
presumed to reflect program-related gains. Instead, potential gains
will be masked by the test’s inability to allow higher posttest scores.

A simple model for constructing a posttest ceiling effect was
constructed in these simulations by forcing all program cases having
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2 6.5 or greater on the postiest to be given the posttest - 'ng value
of 6.5 instead.® This is casily accomplished ! = S he
following threc statements immediately before ramin - 1.
in the program: )

recco 6.5 100 C7 6.5 C7
recco 6.5 100 C9 6.5 Cu
reco 6.5 100 Cll 6.5 Cit

In MINITAB, the recode command can also be stated reco. The
ceiling effect value of 6.5 is arbitrary here and was chosen for
illustrative purposes. The average estimates of effect, standard
errors, and minimum and maximum estimates for both the high and
low reliability conditions are shown in Table 4 for the three designs.

In this example, all three models yield biased estimates of effect
for both high and low reliability conditions. In all cases but one, the
bias is in the direction of underestimating the true effect. This is not
surprising given that there was a posttest ceiling which prevented
larger gains from occurring. In the only exception, the RD design
under the high reliability condition. the effect is overestimated due
to the nature of the regression model which is used. A more detailed
consideration of this result is outside the scope of this paper and the
reader is referred to Trochim (1984) for a more extensive discussion

Table 4
Simulation Results for Posttest Celiling Effect

(true gain=5.0, 50 runs, n=100 per run)

by SE (by) min (b3) max (bjy)
High
Relia- RE 4.242 036# 3.692

. . . 4.9
bility NEGD 3.911 041w 3.465 4.6::
(.9 RD 5.218 .068¢ 4.014 5.987
Low
Relia- RE 3.801 084w 2.477
bility NEGD 4.267 083 3.056 ::2:2
(.5) RD 4.050 «150% 0.950 6.310

* Significance of coefficient is determined by ite valur *

a1l
outside of the range of 2 standard errors (by + 2SEy,) "
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of the RD design and the analytic problems which can lead to this
pattern of results.

The attrition and posttest ceiling examples illustrate the use of
simulations to examine common research implementation problems.
The analyst can directly manipulate the parameters in the models
(e.g., using different values for creating attrition or ceiling effects)
in order to approximate their reality more accurately and to examine
the performance of the design under more varied situations. Such
simulations are useful in that they can alert the analyst to potential
bias and even indicate the direction of bias under the various
assumptions.

DISCUSSION

This paper describes scveral simple simulation models which are
appropriate for a few, relatively confined, human service situations,
namely, the usc of three common research designs for evaluating
human service program effects. Nevertheless, the logic of these
simulations is casily extended to other relevant human research
contexts. For instance, many human service agencies routinely
conduct sample surveys to identify needs and target populations,
assess services which are provided or, compare agency functioning
with the performance of other similar agencies or with some
standard. Onc would construct simulation models for survey instru-
ments for the same reasons that they are constructed for evaluation
designs—to improve tcaching and general understanding and to
cxplore problems in implementing the survey (e.g., non-response
patterns). The key to doing this would again rest on generating
statistical models which are used to create hypothetical survey
responses. A ‘‘true score”’ measurement model is useful here, at
least for simple simulations, but may have to be modified. For
instance, assume that one question on a survey deals with client
satisfaction with a particular service and that the response is a
7-point Likert-type format where | = very dissatisfied, 7 = very
satisfied, and 4 = necutral. The analyst could make the assumption
that for some sample or subsample the true average response is a
scale value equal to 5 points (somewhat satisfied), and that the true
distribution of responses is normal around this value, with some
standard deviation. At some point, the analyst will have to convert
this hypothetical underlying continuous true distribution to the
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7-point integer response format cither by rounding or by geaerating
normally-distributed random integers in the first place. Such a
variable could then be correlated or cross-tabulated with other
gencerated responses to explore analytic strategies for that survey.
Similar extensions of the models discussed here can be made for
stmulations of routinely-collected management intormation system
(MIS) information, for data for correlational studics, or for tune-
series situations, among others.

Simulations arc assumptive in naturc and vary in quality to the
degree that the reality is correctly modelled. When constructing a
simulation, it is important that the analyst secck out empirical
cvidence to support the assumptions which are made, whenever this
is feasible. For instance, it should be clear that the simulations
described here could be greatly enhanced if we had more specific
data on how much and what type of attrition typically occurs, what
type of floor or cciling effects are common, what patterns of
misassignment relative to the cutoff value typically arise for the RD
design, and so on. While some relevant data will be available in the
methodological literature, all of these issues are context specific and
demand that the analyst know the setting in some detail if the
simulations are to be reasonablc.

One way to approach the assumptive nature of the simulation task
is to recognize that reality conditions or parameters in the models
need to be examined systematically across a range of plausible
conditions. This implies that multiple analyses under systematically
varicd conditions which arc based upon principles of parametric
experimental design are needed in ““state-of-the-art’” simulation
work. This point is made well by Heiberger et al. (1983) who state:

The computer has become a source of experimental data for
modern statisticians much as the farm field was to the
developers of experimental design. However, many “*ficld™’
experiments have largely ignored fundamental jrinciples of
experimental design by failing to identify factors cicarly and to
control them independently. When sone aspecis of st
problems were varied. others usually changed ws welle oitena
in unpredictable ways. Other computer-based  ¢xperiments
have been ad hoc collections of ancedotal results at sample
points selected with fittle or no design. (p. 385

Heiberger et al. (1983) go on to describe a gencral madcel for
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simulation design which allows the analyst to control systematically
a large number of relevant parameters across some multidimen-
sional reality space, including the sample size, number of
endogenous and exogenous variables, number of ‘‘key points’ or
condition values, intercorrelations, least squares regression coeffi-
cients, means, standard crrors, and so on. Although simulations
play an cssential role in such rigorous investigation of statistical
procedures, they may be even more important for the human
services in that they enablc the evaluator to explore simple relevant
data structures in order to improve teaching about human service
rescarch and to explore potential research implementation problems.

ENDNOTES

1. Most commonly available statistical packages could be used. Analogous program
listings for SPSS/X and SAS are available upon request from the first author. The program
presented in this paper is machine independent and will run on any comparable version of
MINITAB. The MINITAB version is presented here because that language is widely
available on'micros, minicomputers and mainframes; is relatively inexpensive; and, is easy to
learn.

2. ANCOVA models are described in greater detail in Pedhazur (1982), Myers (1972)
and Keppel (1973). The analysis of ANCOVA models using standard regression analysis
computer programs is described in Nie et al. (1975).

3. In order to make the postiest ceiling conditions similar across the three designs it was
necessary to alter the assignment procedure for the RD design so that the program group
consisted of cases scoring above the cutoff value rather than below it. This is accomplished
by replacing the three statements used to create the RD assignment measure, ¢8, with the
following:

reco — 100 0 ¢S5 -1 ¢8
reco U 100 ¢8 1 ¢8
reco -1 ¢8 0 c8

Thus. all cases having a pretest greater than zero are in the program group and all remaining
cases are in the comparison group. This variation might arise in practice if the program is
given to “advantaged” persons (e.g., a scholarship or award) or if the pre-measure is an
indicator of need where high scores indicate greater need.
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Appendix A

‘MINITAB Program to Simulate
Three Human Service Program Evaluation Designs

# MINITAB Program to simulate a simple pretest-posttest
randomized experiment (RE), nonequivalent group (NE) design,
and regression-discontinuity (RD) design.

# Define simulation parameters
[

let k1=5 ¢ kl is the gain or program effect

let k2=3 4 k2 is the selection bias for the NEGD

let k3=0 # k3 is the wean of the true scores

let k4=3 ¢ k4 is the standard deviation of the true scores
let k5=1 # k5 is the standard deviation of the error terms

%ot k6=100 # k6 is the number of cases desired
# Set MINITAB environment paraseters
#

batch

noprint

brief

]

: Generate random variables needed

nran k6 k3 k4 ¢l # generate true score
nran ké 0 k5 c2 # generate pretest error
nran k6 0 k5 c3 4 generate posttest error
2ran k6 0 k5 c4 # generate assignment error
# Construct pretest for RE and RD

#

let c5=cl+c2 # pretest score
4

# Construct z and y for RE
4

reco -100 0 c4 -1 cé6
reco 0 100 c6 0 cé

reco -1 c¢6 1 cé

let c7=cl + (kl®cé) + c3
¥

# Construct z and y for RD
L

reco -100 0 c5 -1 c8
reco 0 100 ¢8 0 c8

reco -1 ¢c8 1 c8

let c9=cl + (klwc8) + c3
]

4 Construet x and y for NEGD
]

let clO=cl + c2 + (k2*cé6)

let cllwcl + c3 + ((kl+k2)*c6)
]

# Name the variables

1

name cl='true' c2='x-error' ci='y-error' cd=‘'a-error'
name c5=°'x-RE-RD' cé6='2-RE-NE' c7='y-RE' c8='z-RD'
name c9='y-RD' cl0='x-NE' cll='y-NE'
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Appendix A, continued

’
: Group statistics for randomized experiment

table cé6;
stats c3 c7.
¢

: Group statistics for nonequivalent group design

table c6;
stats cl0 cll.
¢

: Group statistics for regression-discontinuity design
table c8;

stats c5 cl1.
¢

: Bivariate plot for randomized experiment

lplot c7 ¢c5 c6
]

: Bivariate plot for nonequivalent group design
lplot cll cl0 cé6
]

: Bivariate plot for regression-discontinuity 2seign

lplot c9 c5 c8
)
: Regression analysis for randomized exp

regr ¢7 2 ¢5 c6 c20 c2l1 c22
pick 3 3 c22 c23
3oin €23 cil c31

: Regression analysis for nonequivalent g

regr cll 2 cl0 cé ¢20 c21 c22
pick 3 3 c22 ¢23
3oln €23 ¢32 c32

: Regression analysis for regression-discontinuity design

regr c9 2 ¢35 c8 c20 c21 c22
pick 3 3 c¢32 c23

join ¢23 ¢33 ¢33

#

: Name results variables and display aggregate results
name cll='REresult' c)2='NEresult’ -
desc cl1 c32 ci) 33= RDresultt

i

Computer Work Skills Training
for Persons With Developmental
Disabilities

Thomas T. Saka
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ABSTRACT. Rescarch has shown that persons with Developmental
Disabilities (DD) can hold a wide range of jobs, given the proper
training and placement. The computer. the technological tool of the
decade. has been used successfully in the education of persons with
handicaps. Five subjects with DD were selected for this six month
study and trained to use the microcomputer in performing basic data
entry and word processing tasks. Four of the five subjects were placed
in computer-related occupations following the training period.

In the past decade the use of computers in the work place and the
home has increased at an astounding rate. To businesses, the
computer is the latest innovation in an ever changing technological
world. It is also a means for persons with handicaps to hold jobs and
attain a level of learning previously thought to be unattainable.

Special education programs throughout the country have begun to
use micro computers to increase the learning and communication
abilities of students. For example, Brady and Bill (1984), Stallard
(1982), and Schiffman, Tobin, and Buchanan (1982) demonstrated
success with computer-assisted learning in regular education class-
rooms. Special education is an area which may be able to gain the
most from these new teaching aids. Studies of the use of computers
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