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INTRODUCTION

The randomized design is the preferred method for as-
sessing the efficacy of treatments. Randomization of all
subjects should he employed whenever possible. Rando-
mization, in principie. serves at least three important
purposes: 1) It avoids known and unknown biases on
average; 2) it helps convince others that the trial was
conducted properly: and 3) it is the basis for the statisti-
cal theory that underlies hypothesis tests and confidence
intervals.!!

Randomization of all subjects has heen criticized,
however, because it may raise ethical concerns or
practical limitations in certain s:tuations. Ethical tensions
may arise, e.g., when strong a prieri (although inconclus-
ive) information favors the experimental treatment. when
the disease is potentially life-threatening, and when
randomization does not explicitly incorporate subjects’
baseline clinical need or their willingness 10 incur
risk.”** Examples that have stirred considerable debate
about the ethics of the randomized design include the
controversies about the release of drugs for AIDS,!™
the availability of drugs for cancer treatment, and the
use of extracorporeal membrane oxygenation (ECMO)
for neonatal intensive care.’’] A second potential
drawback of the randomized design occurs in instances
when randomization is not feasible or practical. Such
situations may arise in health services or outcomes
research, where, e.g., a health education program is to
be targeted only to people who need it"® An evaluation
and comparison between managed care and usual care
could be made feasible if high users of heaith-care
utilization receive managed care only and if low users of
health-care utilization receive usual care only. A study
concerned with the effect of a letter as an intervention (o
control health-care costs could be made practical if the
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letter is sent only to physicians with high-billed charges
per subscriber, while those with lower-billed charges per
subscriber do not receive a letter.” In these contexts,
economic constraints and logistical barriers may dictate
that an experimental intervention is neither practical nor
efficient for those who do not need it or who are not the
targeted candidates. Moreover, treatment allocation that
reflects actual practice allows for testing the effectiveness
of the intervention—its benefit in a real-life setting, as
opposed to its benefit in a controlled setting.

This entry discusses alternative design strategies that are
intended to address ethical or practical concerns when it is
deemed unethical or infeasible to randomize all subjects to
study interventions. These design strategies may be called
“cutoff”” designs because they involve, at least in part, the
assignment of subjects to treatments based on a cutoff score
on a quantitative baseline variable that measures clinical
need, severity of illness, or some other relevant measure.
What follows is an overview of cutoff designs.

DESCRIPTION OF THE
REGRESSION-DISCONTINUITY DESIGN

The most basic of cutoff designs is the regression-dis-
continuity (RD} designm‘m_m in which a baseline 1n-
dicator, e.g.. severity of illness, can be used to assign
subjects to an intervention. All subjects below a cutoff
point on the baseline indicator receive one treatment,
while all subjects above it receive another treatment, The
history of the regression-discontinuity design is found in
the social sciences, specifically in program evaluation. Tt
has been employed to evaluate the effects of compens-
atory education, being on the Dean’s list, a criminal
justice program. a health education program on serum
cholesterol, accelerated math training, and the NIH Career
Development Award."*! In these scenarios, randomiza-
tion of subjects wag not a viable alternative.

The traditional RD design is a single-cutoff quasi-
experimental design that invelves no random assignment.
The RD design received its name from the “‘jump.’’ or
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Fig. 1 Regression-discontinuity design with a 10-point treat-

ment effect.

discontinuity, at the cutoff in the regression line of baseline
and outcome (follow-up) scores that occurs when there is a
treatment effect. Fig. 1 depicts a RD design with a
hypothetical 10-point treatment effect (reduction). All
subjects with scores above 20 on the baseline assignment
indicator are most in the need of the intervention and hence
are automatically assigned to the test (experimental}
treatment, while those with scores of 20 or less (those less
in need) are automatically assigned to control treatment.

As Fig. 1 shows, the outcome scores of the test treat-
ment group (those scoring above the cutoff) are lowered
by an average of 10 points from where they would be
expected in the absence of a treatment effect. The solid
lines show the predicted regression lines for a 10-point
effect. and the dashed lines show the expected regression
lines for patients in a treatment group if they were given
the other intervention instead.

The baseline assignment covanate should be measured
on at least an ordinal scale; it is although more desir-
able to have & continuous (ratio-level or interval-level)
baseline assignment variable. Baseline and outcome may
be the same or different. the cutoff can be placed
anywhere along the baseline measure (as long as there
are sufficient numbers in the control group), the direct-
ion of improvement can be positive or negative for
either vanable, the treatment groups could have more
than two levels, and the response variable can be dis-
crete Or continuous.

VALIDITY OF THE

REGRESSION-DISCONTINUITY DESIGN

Under the assumption that the outcome—baseline func-
tional form is correctly specified, the RD design results
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in an unbiased estimate of treatment effect. An unbiased
estimate of treatinent effect is obtained because the as-
signment process is known perfegtly and controlled for
in the analysis.'” Formal statistical derivations proof-
ing this unbiasedness are found elsewhere.!"*'"} Like the
randomized experimental (RE) design, the RD design
gives a known probability of assignment to treatments.
It is although imperative that the cutoff assignment rule
be followed strictly. If subjects are misclassified, then
the treatment effect is likely to be biased.

It can also be demonstrated that the estimate of
treatment effect in the RD design, like the RE design,
remains unbiased when random measurement error in the
observed, fallibly measured baseline covariate is con-
sidered."*~""L:The reason for this is, once the fallibly
measured observed baseline scores are known, treatment
assignment,/is completely determined and hence inde-
pendent of anything else, including the perfectly meas-
ured true baseline scores, in the RD design. Similarly, in
the RE désign, treatment assignment is completely de-
termined by a randomization scheme and hence inde-
pendent of anything else.

Regression to the mean, which naturally emanates
from random measurement error in the observed baseline
covariate, therefore does not affect the estimate of
treatment effect in both the RD design and the RE de-
sign. Fig. 2 graphically shows the impact of regression
to the mean, or, equivalently, random measurement error
in the observed covariate, in the case of no-treatment
effect when the same variable is measured at baseline and
follow-up. In the absence of a treatmemt effect, and with
no other effects that may change a subject’s score at
follow-up, the true regression line should be a 45° line
beginning at the origin. Regression to the mean causes
the fitted regression line to be attenuated by an amount
proportional to the reliability coefficient of the baseline
covariate; therefore the sample regression coefficient of
the baseline covariate on the outcome measure is biased,
but the sample regression coefficient of the treatment
effect is not.!'4!%)

The RE design is robust in giving unbiased estimates
of reaunent effect when the true functional form between
the baseline covariate and the outcome measure is not
correctly specified. On the other hand, the RD design is
not robust here. The most critical step in obtaining an
unbiased estimate of effect in the RD design lies in
modeling this true functional form correctly. The true
functional form, however, is not known in the RD design
because of missing data. As shown in Fig. 1, which
assumes a linear functional form, the extrapolated re-
gression line of the control group (dashed line, right) if
this group’s subjects were given lest treatment instead is
assumed to continue in the same linear way as its fitted
line (solid line, left). The extrapolated regression line of
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Fig. 2 Regression to the mean: randomized design and regression-discontinuity design.
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SPECIFYING THE FUNCTIONAL FORM

ooestion 10 armve at the correct functional form is
One Mes olynomial backward elimination regression
to use h (18! }_\nother suggestion uses empirical Bayesian
approdc '[0 overcome situations when the outcome and
meth(-)ds relationship may not be linear, as when true
baselin ¥ " "are not normally distibuted.!”*** A third
basehnehs which can be used with either of the other
approac rl)aches, is to fit a regression line over a wider
I?VO apgf the baseline—outcome distribution, resulting
ranee xtrapotation and hence a more valid fit. This
n less eoach can be achieved by combining the RD
La;:i;pil;ith the RE design, resulting in 4 cutoff design

with random1zat10n.

COMBINING REGRESSION-DISCONTINUITY

D
D HANDOMIZE
‘E\)IN(IPERIMENTAL DESIGNS

iscontinuity design can be described as a
cutoff desigh without randomi.zation. T.his de;eign.czm also
be coupled with & .ra.ndomlze-d design. For instance,
patients who score W}lhln thf: mlddle range of scores on a
bascline Sevcri[y-of-lllness m‘dlcalor (e.g.. those moder-
a[él}’ |1y are randomized to either one of two treatments.
while padients who score below a given cutofl value on

A regression‘d

this indicator (e.g., those most ill) are automatically
assigned to the novel treatment and patients who score
ahove another, higher cutoff value (e.g., those least 111) are
assigned to the control treatment. Another type of catoff
design, for instance, would have subjects below the single
cutoff point (e.g., the most il randomized to either
treatment, while those above it (e.g., the least ill} are
automatically assigned to control treatment. These are
only two possible design variations that combine cutoff
assignment and random assignment. Other variations are
mentioned elsewhere.!*!*!

Combining the RE design and the RD design may give
advantages over either design alone.”'"*1 Relative 1o the
RE design, this hybrid design may be better suited to
address ethical or practical concerns, may result in a
Jarger eligible and diverse sample, and may better address
the effectiveness (as opposed to the efficacy) of interven-
tons in particular circumnstances. Compared with the RD
design, RD-RE design has enbanced validity and im-
proved statistical power.

ILLUSTRATION: COCAINE PROJECT

To illustrate the combined design, we describe a cocane
project, conducted by Havassy and colleagues at the
University of California at San Francisco, that applied
the RD-RE design instead of the completely random-
ized design, which was considered neither ethical nor
feasible. The study included about 500 patients with
cocaine addiction. The objective of the study was to
determine whether inpatient (intensive) renabilitation
showed better improvement, and by how much, over
outpatient rehabilitation. The baseline assignment COVArl-
ate was based on a weighted composite of four scales: b
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Fig. 3 Tllustration of a combined randomized and regression-discontinuity design.

employment and legal status; 2) family relationship and
recovery; 3) alcohol and drug history; and 4) psycho-
logical status. Higher scores indicated more clinical need
for the more intensive (inpatient) rehabilitation. The pri-
mary outcorne variable was the same variable measured
at follow-up.

Fig. 3 portrays how patients may be allocated into
inpatient or outpatient rehabilitation in this sefting. All
patients who score above 60—those most severely ill or
most in need—are automatically assigned to inpatient
rehabilitation; all patients who score below 40—those
least ill or least in need—are automatically assigned to
outpatient rehabilitation; and patients who score in be-
tween 40 and 60, inclusive—those moderately ill or in
need—are randomized to either inpatient rehabilitation
or outpatient rehabilitation. Note that it is this cutoff
interval of randomization that distinguishes the RD-RE
design from the RD design, which instead has a culoff
point(s) with no randomization.

Like Fig. 1, Fig. 3 has solid lines representing the
predicted regression lines and dashed lines representing
the extrapolated regression lines, showing a constant im-
provement from inpatient rehabilitation over outpatient
rehabilitation. An analysis of covariance model, with the
baseline assignment measure and the treatment group
variable as predictors, would be a correct model to fit the
fitted lines in Figs. 1 and 3. An analysis of variance
mode], which excludes the baseline assignment variabie,
should not be fit as it would result in a biased estimate of
treatment effect. While linear relations are highlighted in
these two figures, cutoff designs are not restricted to a
linear baseline—outcome relationship; higher-order terms

i

(e.g., quadratic or cubic terms), transformations on base-
line or outcome variables, and interaction terms may also
be fitted.

In a simulation study, several RD-RE design varia-
tions, of which the basic design in Fig. 3 is the simplest
one, were evaluated and compared among themselves,
along with the traditional RD design and the traditional
RE design.”'*’! An unbiased main treatment effect was
found for all these designs.

Fig. 4 shows one of the more advanced RD-RE
designs that may be useful for accommodating varying
amounts of resources. One cutoff interval has its bounds
at 45 and 55; the other cutoff interval has its bounds at
40 and 60. Both imtervals are symmetric around 30.
Because the (wo intervals have different widths, they
inctude different numbers of randomized patients, with
the wider interval containing more randomized subjects.
As subjects accrue into a study, investigators of a clini-
cal site may favor one interval of randomization over
the other in order to address the cost implications of
having a shortage or surplus of hospital beds for in-
patient rehabilitation, or one interval may be preferred
because it is more commensurate with a hospital’s
level of resocurces and expertise with respect to a
given treatment.

MODELING AND ANALYZING
CUTOFF DESIGNS

The RD-RE combination can be modeled and analyzed
with the polynomial backward elimination approach
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Fig. 4 Randomized and regression-discontinuity design with two cutoff intervals.

mentioned in ‘‘Specifying the Functional Form’” for the
RD design. Specifically, the initial model equation is

y = bint + (btrt)*z + {bxcut)*xcut
+ (bxcutz)"‘(xcul)2 + (bxc1.1t3)’“(m:ut)3
+ (blinint}*(z*xcut) + (blinquad)*{z*xcutz)
+ (blincub)*(z*xcut3) + error

where y = outcome measure; Xcut = baselinet assign-
ment covariate minus a baseline value at which to
measure the treatment effect (e.g.. the middle value in a
cutoff interval in a RD-RE design or the cufoff value
itself in a RD design); z = binary treatment group
variable; bint = intercept estimator; btrt ‘.‘= treatment
effect estimator; bxcut = linear slope estimator; blin-
cut = linear interaction estimator; and error = sample
regression error term.

The other regression coefficients are the coefficients
for powers of ‘‘xcut’”” higher than 1 and for their cor-
responding higher-order interactions. The same set of
assumptions that apply to linear regression (for continu-
ous responses) and to logistic regression (for discrete
responses) also applies here.

The modeling strategy first tests the significance of
each regression coefficient separately beginning with the
higher-order interaction terms; that is, the cubic inter-
action is tested first, followed by the guadratic interaction,
and then linear interaction. Interaction- terms are tested

before main effect terms. All significant terms and their
lower-order counterparts are retained. The baseline
covariate term and the treatment group variable are
always kept in the final model.

RELATWE SAMPLE SIZES NEEDED IN
CUTOFF DESIGNS

The simulation study mentioned in ““I1lustration: Cocaine
Project’” also showed that, everything else the same, more
randomization resulted in lower standard errors of the
treatment effect estimate and therefore increased pre-
cision. It can be shown that the amount of this precision is
completely determined by the multicollinearity or cor-
relation (R) between the baseline assignment covariate
and the treatment group variable as expressed by the
variance inflation factor (VIF):“S]

VIE = 1/(1 —R%)

Suppose that there is a binary treatment group variable
and a normally distributed baseline covariate, Table 1
provides the correlation between these two variables {R)
and the accompanying VIF in symmetric cutoff designs
with varying amounts of randomization and with 50% of
the subjects within the interval randomly assigned to
either treatment. The VIF can be interpreted as the design
effect of how many more subjects are needed in a given
cutoff design relative to the completely randomized
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Table 1 Correlations and variance inflation

of randomization

Cutofl Designs

factors of designs with varying amounts

Percentage of all subjects within Correlation Variance inflation
the interval of randomization coefficient® factor

0 (regression-discontinuity design) 0.79 2.75

20 0.77 248

40 0.70 1.96

60 0.56 1.46

80 (.35 1.14

100 (randomized design) (.00 1.00

“Expected correlation between a binary treatment variable and a normally distributed baseline covariate.

design in order to achieve the same level of statistical
power, everything else the same.

Table 1 shows that, to achieve the same leve]l of
statistical power as the RE design, 2.75 times more
subjects are needed in a RD design; 2.48 times more
subjects are needed in a RD-RE design with 20% of all
subjects randomized (ie., 20% randemization}; 1.96
times more subjects are needed in a RD—RE design with
40% randomization; 1.46 times more subjects are needed
in a RD-RE design with 60% randomization; and i.14
times more subjects are needed in a RD-RE design with
30% randomization. Derivations for the efficiency of such
a cutoff design using an analogous approach, which gives
the same results, are published elsewhere, !

RECENT CRITIQUES

Cutoff designs are certainly not without limitations. As
mentioned earlier, an unbiased estimate of treatment
effect requires that the functional relationship between
outcome and baseline covariate be correcily modeled.
Finklestein et al.!'%-2% proposed a mathematical and
statistical foundation, illustrated with examples, for ana-
lyzing the RD design and for drawing valid statistical
conclusions about treatment efficacy. The authors dis-
cussed and illustrated their empirical Bayes methodology,
which they mention can be used in a variety of circum-
stances, as a way o overcome restrictive assumptions
about the tunctional form between outcome and baseline
covariate. In another research, Hahn et al.?%! proposed a
way of neonparametrically estimating treatment effects
and offered an interpretation of the Wald estimator as
an estimator of effect,

Another reservation with cutoff designs is that they
preclude any serious attempt al complete blinding of
treatment, making them similar to nonrandomized designs
in this regard. A further drawback of catoff designs 15 that
they are less efficient (precise) than completely rando-

mized designs in terms of their estimates of treatment
effects. According to Senn,®! the considerable excess of
patients treated on the inferior treatment in cutoff designs
(especially the RD design) relative to the RE design is
likely to undermine the ethical argument that favors cutoff
designs. Although it is also true that more patients will
receive the superior treatment in cutoff designs, regard-
less of which treatment it is, researchers are urged to
consider Senn’s position'*®! before abandoning randomi-
zalion as a perceived ethical problem in a clinical trial.

Published studies using the RD design have focused
primarily on linear regression applied to a calegorical
indicator and an interval-level response. Berk and de
Leeuw'”" formalized a generalization of the usuai RD
design to a wider range of situations. They focused on the
use of categorical treatment and response variables but
considered the more general case of any regression re-
tationship. In addition, a resampling sensitivity analysis
was shown as a way to address the credibility of the as-
sumed assignment process. The broader formulation is
applied 10 an evaluation of California’s innate classifica-
tion system. which is used to allocate prisoners to dif-
ferent kinds of confinement.

CONCLUSION

Randomization should be employed whenever possibie.
Cutoff designs should not replace the completely ran-
domized design in the majority of circumstances, usually
involving a drug intervention, when no appreciable lo-
gistical barriers preclude all subjects from being rando-
mized to interventions. Cutoff designs are an alternative
design when circamstances in health services research or
oulcomes research warrant that randomization of all sub-
jects cannot be undertaken for whatever reason. Cutoff
designs are much more likely to be relevant and appro-
priate in studies on program evaluation that involve edu-
catonal or behavioral interventions than in traditional
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Phase I studies on drug interventions, but cutoff designs
may have potential in Phase 1I therapeutic trials as well.
When compared with nonrandomized designs, the re-
gression-discontinuity design (a cutoff design with no
randomization) is an atiractive alternative. When some
subjects can be randomized, coupling the regression-
discontinuity design with the randomized design Is an
even more attractive alternative than the RD design.
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