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OVERVIEW OF CHAPTER 14

—— s ——

S uppose you are an administrator of a state-run program in your
county that provides counseling and sacial services to juvenile of-
fenders. You and your staff develap a special approach that you believe
will reduce recidivism, and you are given permission (o jmplement this
_afpprc:zich in your county. [Filis successiul, the program director would
like to disserninate your approach to the other counties in the state, How
will you demanstrate that your program is successful?

This chapter, coauthored by Trochim and Campbell, may provide an
inexpensive yet valid way to determine whether your approach had an
impact. The authors discuss the Regression Point Displacement Design
{RPDD), which can deal with large units such as schools, cities, ar
counties using aggregated instead of individual data. A single unit receiv-
ing an ameliorative treatment can be compared to a number of control
units. Pretests and posttests are required, although it is not necessary that
the same measure be used, The REDD regresses the postteston the pretest
and fits a regression line for the control units only. A t-test determines if
the distance (or displacement) of the treated unitis significantly different
from its expected value on the regression line. I there was no treatment
effect, one would not expect the treatment group to differ at greater than

309



il0

DESIGNS AND TECHNICAL ISSUES Overview of Chapter 14

chance levels from the regression line, In the situation described pre-

viously, this design could be applied rather effortlessly, because it islikely
that recidivism rates at regular intervals are already available for every

county in the state and can provide the pretest and posttest measures.
The RPDD is characterized by four features: A single treatment unit

is often used, aggregated data are generally used rather than mdmdual_'
data, the groups do not have to be equal prior to treatment, and the
observed repression line is used for the anal}rsls rather than as a stausucal e

adjustment for pretreatment differences.

The usefulness of the design is demonstrated in a dﬁcu&‘.lﬂn of 1.hc

Medicaid Regression Point Displacement Design and the ‘Echm_mphrcm-:
Reaction Time Study. [n both of these applications, the RPDD showed
that the treatment groups differ significantly from the Tegression line.

The authors warn, however, that because this is a'quasi -experimental :
design, rival explanaﬂuns for the noted effect must be ruled out. In the

Schizophrenic Reaction Time Study, for example, the effect is notappar-
ent when the data from the individuals (rather than the grouped data)
are analyzed. The authors argue that the RPDD can never have greater

pawer than such a micro-level analysis, and that the significant effect

nated using the RPDD is a result of the small error term that occurred
when the regression ]me was fitted to only three points.

- The basic Jeqmrfments for. the RPDD are (a) It]umple cuntrol 2
groups, and (b) pretest and posttest mmsuremenls There are man}' i
variations of this design, however, based on five dimensions: how the
treatment group is chosen, the entity that will be me.zsure.d the number
of treatment groups, SATme O dlfferent meaﬁurcs fur pt’E— and pnstt&st

and the number of mvanates

The authors devote the final 5E,ctmn uf the chapter to the threats o _' :
valdity that are most pmblemanc when using this dcs1gn Both selection % ;
bias and regressmn artifacts can be ruled outif the trcatmcm gro ups are'
chosen randomly or sclm.ted hased on a sharp cutoff pmnt Doing so.
- makes the REDD akin fo the Randomlmd Experiment or the Regression |
D1scnnt1nu1t}' Demgn, respectively. Bias can be unmduced however, if
there is measurement error in the pretest. When this oceurs, the regres-
sion line is rotated slightly, and the bias bemmﬂs more extreme as the.
dmtance increases bameen t‘he tmatment graup pretest mean .md the'

averall pretest mean. Instrumentation can be a problem if the measure-
ment process has changed in the treatment group between the pretest
and the posttest, and local history should be exarnined to determine if
differences exist in the treatment group setting that might affect posttest
performance. The power of the RPDD is dirninished somewhat becanse

of the few points Lypically nsed; however, this is offset by a gain in power

resulting from more reliable apgregated data. The authars feel that this
issue needs further investigation. The r-rest used in the statistical analysis

of this design assumes that the control groups are a random sample of

the population. Because this assumption can neyer be met, control
proups should be selected based on their variability.

Unfortunately, the external validity of this design is low. What daes
this mean, then, if you found that your approach to reduce recidivism
for juvenile offenders was efféective? You might suggest that the approach
be tried firstin counties with similar pretestrecidivisin rates, because you
can generalize with more confidence to similar groups. Unfortunately,
you cannot be sure that your approach would be as effective in markedly

different counties.
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DESIGN FOR COMMUNITY-BASED
DEMONSTRATION PROJECTS

———— e

“his chapter describes an old but neglected quasi-experimental

research design. Figure 14.1 reprints its most widely distributed
exemplar, used by Riecken et al. (1974, p. 115), and Cook and
Campbell (1979, pp. 143—146), neither source presenting any statistical analy-
sis. They cite Fleiss and Tanur (1972) from whom we borrow Figure 14.2, in
which is claimed an effect significant at the p < .05 level. They in turn cite H.
E. Smith (1957) and Ehrenberg (1968) as at least partial predecessors. In the
examples of Figure 14.1 and 14.2, the measures employed on the x- and y-axes
are quite different. This option is shared with the regression—discontinuity
(RD) design (Trochim, 1984), which is related to the design described in this
chapter. Our Figure 14.3 illustrates this application, drawn from the same data
set as Figure 14.1. Although generally the interpretability of the design will be

Trochim, W. M. K., & Campbell, D. T. (1996). The regression point displacement design for evaluating !
community-based pilot programs and demonstration projects. Unpublished manuscript. !
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Figure 14.1. Medicaid example modified from Riecken et al. (1974). Used by per-
mission of Academic Press.

substantially greater when the same measure is used before and after, we will
not argue that this is so for Figure 14.3.

We envisage a typical application as employing repeated (e.g., annual) rate
measures, for cities or some larger or smaller reporting units, with one (or
several) units receiving an intensive ameliorative effort not given in the others.
Because of this anticipated usage, we shall refer to the x-axis as the pretestand
the y-axis as the posttestin what follows. Some treatment or program, very often
likely to be a community-based pilot program or demonstration project, is
administered to the treated unit. Although in Figure 14.1 the treated unit was
the most extreme on the pretest, the method is applicable no matter where in
the distribution of pretest values the “experimental” unit falls. Indeed, the
statistical power and interpretability is likely to be better for mid-distribution
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Figure 14.2. Fleiss and Tanur (1972) graph.

demonstration sites. The untreated units we will identify as control units or
control groups. The analysis fits a regression line to the control units and tests
the significance of the departure of the experimental unit from that regression
line. The name suggested for this design is the Regression Point Displacement
Design (RPDD).

Demonstration programs and pilot projects usually receive only very weak
and methodologically suspect evaluation. Often there is only a comparison of
rates for that one unit for a time period before the special effort and a time
period afterward. Or a single comparison unit (e.g., another city similar to the
demonstration one) is employed, inevitably differing in many ways. The po-
tential power of the RPDD comes from using numerous untreated units as
“controls.” and from not requiring pretreatment equality between any one of
them and the experimental unit.

The RPDD remains very much a quasi-experimental design, for which
many of the common threats to validity must be examined on the basis of
contextual information not included in the statistical analysis. If a statistically
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Figure 14.3. Medicaid RPDD with physician visit for both pre- and posttreatment from
Riecken et al. (1974). Used by permission of Academic Press.

significant displacement is shown, there are many other possible causes that
need to be considered, over and above the demonstration program.

The RPDD can be illustrated with a simple hypothetical example. Consider
a single site at which a treatment is administered. Furthermore, assume that
there are arbitrarily ten other sites that will not get the treatment (control sites)
but will be measured. All available persons at both the treatment and control
sites are measured before the treatment and at some specific time after the
treatment. Note that as a result of normal turnover rates and absenteeism at
each site, the persons measured at the pretest may not be the same as those
measured at the posttest. The resulting data might look like the simulated
values depicted in Figure 14.4.

The figure shows the linear regression line of the ten control group
pretest—posttest pairs of means. The vertical line indicates the posttest displace-
ment or “shift” of the treatment group from the regression-line predicted value.
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Figure 14.4. Hypothetical RPDD using simulated data.

In this case, it is visually clear that the displacement probably exceeds the
normal variability one might expect around the regression line and indicates a
likely treatment effect.

The central idea of the design is that in the null case, one would not expect
the treatment group to differ at greater than chance levels from the regression
line of the population. There is evidence for a treatment effect when there is a
posttest (vertical) displacement of the treated group point from the control
group regression line. This led to the name regression point displacement. Of
course, this evidence does not imply that the treatment of interest is what
“caused” this vertical regression shift. One must always assess the plausibility
of other potential causes for such a shift.

The RPDD is characterized by four major features: (a) the use of a single
treated unit instead of many; (b) the use of aggregate-level data instead of
individual-level; (c) the absence of any need to ensure (or attempt to achieve
by statistical adjustment) pretreatment equality between treated and control



318 DESIGNS AND TECHNICAL ISSUES

groups; and (d) the avoidance of “regression artifacts” or underadjustment as
a result of “errors in variables” by employing the observed regression line,
rather than using it as a ineans of adjustment. Feature d, and to a lesser extent
¢, are shared with the regression—discontinuity (RD) design. The first two are
not absolutely necessary. We would still probably classify a study with two or
even three demonstration sites as an RPDD. The key distinction is that in
alternative designs there are enough points to allow one to fit the same model
to both groups, whereas the RPDD typically does not. For instance, in the RD
design, one usually has enough points in both groups to be able to estimate a
within-group slope, whereas in the RPDD, that is not possible or justifiable,
given the few available treatment group points. The higher aggregation level
(e.g., cities) is also a typical RPDD characteristic, although it is by no means
required. One can envision an RPDD design involving only a single person who
receives a treatment, with multiple control persons.

THE MEDICAID REGRESSION
POINT DISPLACEMENT DESIGN

The first example comes from the Medicaid study discussed in Riecken et al.
(1974, p. 115) and Cook and Campbell (1979, pp. 143-146), part of which was
shown in Figures 14.1 and 14.3. The original data are shown in Figure 14.5
(taken from Lohr, 1972; Wilder, 1972, p. 5, Table B).

The figure shows the average number of physician visits per person per
year in the United States for the years 1964, 1967, and 1969, broken out by
family income ranges. The Medicaid program was introduced in 1964. The
legisiation mandated that only those families with an annual income of less
than $3,000 were eligible to receive Medicaid. Overall, itappears that the annual
average number of physician visits is declining for most income groups with
two notable exceptions—the lowest income group shows an increase over both
time intervals and the second lowest group increases between 1967 and 1969.

The central question is whether the introduction of Medicaid is associated
with a significant increase in the average number of physician visits per year.
Several RPDDs can be constructed from these data. The first is identical to that
shown in Riecken et al. (1974, p. 115) and Cook and Campbell (1979, pp. 143—
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146) and displays income group along the horizontal axis and physic'{an visits
on the vertical as shown earlier in Figure 14.1. One problem in analyzing these
data concerns the metric for the pretest. We know that income distributions
tend to be nonnormal and as a consequence we may need to transforr'n the
pretest variable before conducting the analysis. We also see that the highest
income group has no upper-income limit given. To analyze these datfi, we
decided to use the logarithm of the upper and lower limit for each pretest
income interval (with an upper limit for the high pretest group set arbitrarily
at $50,000 and the lower limit for the low income group set to $1000) and then
use the midpoint between these logs as the pretest value for each group. The
transformed data are graphed in Figure 14.6. The ANCOVA estimate of effect
(in log pretest units) is B, =.824 (t=21.03, p = .0002). .

A second RPDD can be constructed from these same data by graphing
posttest (1967) physician visits against pretest (1964) ones fo'r each inc.o.me
group as shown earlier in Figure 14.3. The lowest income group is by definition
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Figure 14.6. RPDD for the study of the effects of Medicaid on physician visit rates with
logs of income as pretest.

the Medicaid treatment group indicated by an x on the graph. The other income
groups are shown with an o and can be considered comparison or control
groups. The Medicaid group had the lowest pretest average number of physi-
cian visits. The question is whether their posttest level is significantly higher
than would be predicted given the control group pre-post levels. The ANCOVA
estimate of effect is 3, =.479 (t = 3.63, p = .036).

Medicaid appears to be associated with a significant rise in annual physi-
cian visits, but one still cannot conclude that Medicaid is what caused this rise.
In order to reach this conclusion, one has to rule out any plausible alternative
causal explanations for the observed effect (Cook & Campbell, 1979). Several
possibilities suggest themselves. First, it could be that the regression line that is
fitted to the data does not accurately reflect the true regression for the popula-
tion in question. The question is whether the apparent significant effect results
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from specification of the wrong regression model. This could arise in some
contexts because the control groups do not represent the population of interest,
an unlikely event in this case because the control group means include the
entire U.S. population income ranges (although the use of a single group to
indicate the annual physician visits for all persons with incomes of more than
$15,000 may very well distort the shape of the graph). The more plausible
problem is that the control group pre-post relationship is not linear in the
population, but is instead quadratic or some other functional form. Following
Darlington (1990, p. 295), the polynomial regression (including both the linear
quadratic terms in the regression model) is fitted to the data. The resulting
equation is

Y,=-13.56 + 6.6X;+ —.59Y}

Neither of the X-coefficients is statistically significant (at p < .05), a result that
is probably attributable to the small number of points and the consequent low
statistical power associated with each estimate (note, however, that the linear
term alone is significant in the original ANCOVA model). This linear plus
quadratic regression line is shown in Figure 14.7.

The polynomial regression fits the control group points better than the
linear one did. However, it is impossible to know whether it is the better model
for the population with so few points available for prediction (remember, one
could fit the observed points perfectly with a fourth-order polynomial model).
In judging plausibility one must examine the assumption that the straight-line
fit is misleading in that a curvilinear plot would reduce the departure from
expectancy. In this example, even if the linear model is not the best, it is clear
from visual inspection that no reasonable model would rule out the sensibility
of concluding that there is a significant effect for the Medicaid group. The linear
fit reduces the Y, — Qo discrepancy from that which any reasonable curvilinear
fit would produce. With the polynomial model, the observed treatment group
posttest will be even further from the predicted value. We feel that in this case,
the linear fit is conservative, rather than misleading. A curvilinear fit should of
course be the privileged fit in cases in which it reduces the apparent effect. Note
that these problems are minimized in cases in which the experimental unit falls
in the middle of the controls in as much as the Y, — Qo discrepancy will vary
little as a function of the curvilinear plot chosen.
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Figure 14.7. Second-order polynomial regression line for the RPDD data from the
study of the effects of Medicaid on physician visit rates.

A second threat to the causal inference is an issue of internal validity. There
may have been some other factor affecting only the lowest income group that
increased their annual physician visit rate. For instance, if there is another low
income subsidy program, such as the WIC nutritional supplement program, it
may be that the rise in physician visits is attributable to the increased gyneco-
logical care subsidized by that program rather than to the Medicaid subsidies.
There is no way to rule out that threat with these data, although one could
examine it by comparing physician visit rates for WIC versus non-WIC recipi-
ents if such data were available. The problem in this context is that there are
likely to be many federal or state programs that are targeted to the lowest
income group (i.e., those who fall below the official poverty line). Although we
would usually argue that an RPDD that gives the treatment to an extreme case
is preferable to uncontrolled treatment assignment, it is not preferred when the
implicit cutoff is a well-publicized, frequently used value such as the federal
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poverty level, which is used as the criterion for assignment in many national
programs that constitute alternative potential causes for any observed treat-
ment effect. Thus, in this case, it is impossible to be confident that the observed
effect is a result of Medicaid alone. Nor does the apparent jump in physician
visits for the next highest income group from 1967 to 1970 (evident in Figure
14.5) solve the problem because it too may very well result from raises in the
Medicaid eligibility cutoff values, raises in the official poverty incomelevel (and
the consequent eligibility for other federal programs), or both.

SCHIZOPHRENIC REACTION TIME STUDY

Fleiss and Tanur (1972) described a version of a Regression Point Displacement
analysis that explored reaction time in schizophrenics. The purpose of this
analysis was to examine whether clear-cut schizophrenics differ from other
groups in their cross-modal-ipsimodal reaction time difference. The data are
shown in Figure 14.2. The ANCOVA estimate of effectis B, = 16.11 (¢=109.59,
p=.0058).

Many readers will join us in being surprised that such power can be
obtained from an application with just three control group points. There are
several variables affecting such a p-value. One is the degrees of freedom (in this
case, N- 2 =1 df). A second is the dispersal of values in the control groups
from the fitted line. A third is the magnitude of the departure of the treated
group from the center of the fitted line (i.e., the error term is larger the greater
the distance of the treatment group pretest mean from the mean of the control
group average).

Let us consider the second component. In this case, the linear fit is
essentially perfect, producing a very small error term, and hence a very large
t-value. But with only three points, are not such perfect fits going to happen by
chance very frequently? Or, to put it another way, in repeated samplings from
the same universe, is not the error term going to fluctuate widely from repli-
cation to replication? Can we be sure that the small-sample values for the ¢-test
are still appropriate for this application, for df = 12 Note that Fleiss and Tanur
failed to find a significant effect when using within-group variance, in contrast
to the Figure 14.2 analysis using only group means. We would argue that the
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relative power of an RPDD can never be greater than the power of a more
microlevel analysis (e.g.; using individual data points instead of group means)
on which it is based, even though we may serendipitously find extremely
significant estimates in a given RPDD, as in this example. Thus, although our
presentation has been inspired in part by Fleiss and Tanur’s (1972) seminal
paper, we regard the specific application with caution just because the perfect
linear fit is so out of line with ordinary experience. Someone interested in
applying their finding would be well advised to explore the relationship be-
tween the ipsimodal versus cross-modal-ipsimodal differences over a larger
number of diagnostic groupings in an effort to get a more plausible error term.

REQUIREMENTS FOR THE RPDD

To qualify as an RPDD, there must be multiple comparison or control groups
and pre—post measurement. But given this restriction, there are many alterna-
tive versions of the design that are possible. Many of the variations can be
described in terms of five major dimensions, where a different RPDD can be
constructed for different combinations of these dimensions. The dimensions
follow.

1. Method of Assignment of Treated Unit

For almost any two-group pre—post design it is possible to construct a
RPDD analogue. If the single experimental unit is randomly assigned (from a
pool of potential candidate units), the RPDD is analogous to a Randomized
Experimental (RE) design. When the experimental unit s chosen because it has
the most extreme value (high or low) on the pretest, this is essentially equivalent
to assignment by a cutoff (the cutoff in this case is usually implicit and consists
of the pretest values that distinguish this extreme case from the others), making
the RPDD analogous to the regression—discontinuity (RD) design. Finally,
when the treatment group is chosen arbitrarily, for political reasons or personal
favoritism, or for any other unspecified reason, we can consider the assignment
to be by an unknown or unspecifiable rule, and the RPDD is most analogous
to a Nonequivalent Group Design (NEGD). For most of the experimental or
quasi-experimental designs, it is possible to construct RPDD analogues, and
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useful to do so because consideration of analogous designs and the literatures
that have grown around them will help raise validity issues that ought to be
considered in the RPDD analogue.

2. The Unit of Measurement

The unit of measurement refers to the entity represented in each pre—post
pointina RPDD. Usually, these will be broad units—states, cities, communities,
socioeconomic groups, diagnostic groups—not individual persons. However,
an RPDD design can be constructed using either aggregated individual data or
group data. For instance, many readily available databases consist of already
aggregated frequencies, rates, proportions, or averages across geographically or
demographically defined groups. In the Medicaid example of Figures 14.1 and
14.3, the average number of physician visits per year per person for six different
income groups is used. The RPDD analysis does not require physician visit rates
by individual (nor changes in such rates)—it operates in this case on the group
averages. Restricting the data analyzed to repeated measures from the same
individuals adds power to some statistical analyses. If the group means in each
case are based on the same persons in each year, we might expect a smaller error
term (see Cook & Campbell, 1979, pp. 115-117). Yet in most instances, if a
survey is conducted in a number of communities before and after an educa-
tional intervention in one of the communities, the people measured on the
pretreatment survey are not likely to be the same as those measured afterward
(unmatched). The RPDD is perhaps the strongest design available for studying
community-level interventions in which different persons are sampled on each
occasion. It is also possible to use the RPDD when the pretest and posttest
scores are based on the same person. For example, the same (matched) patients
could be measured before and after, but for the RPDD, all such patients at a
given site (or clinic, hospital) would constitute a unit and their average scores
used. This pre~post same-individual RPDD might arise in the case in which
the same students within a school are measured before and after some treat-
ment is implemented in a single classroom. Classroom average scores could be
used in conducting a RPDD analysis, or individual scores (groupingall control
group cases together) could be used in amore traditional nonequivalent group
analysis. One must be careful in using data from separate pre- and posttest
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samples because of the potential bias that can arise. For instance, if pretest and
posttest average scores for a group are used, it is likely that those nondropouts
present on the posttest are unrepresentative of the original pretest group.
Contrast this with two different but repeated random samplings over time from
the same community. Although even this may be biased in the sense that the
basic demographic structure of the community may have evolved between
measurements, it is much less plausible in this case, especially when the time
span is relatively short. Random, rather than opportunistic, sampling on each
occasion can help to ensure some degree of equivalence when repeated mea-
sures are not obtained for the same group of people.

3. The Number of Treatment Groups

In the simplest case, the RPDD involves only a single treated group or site.
The treatment would be administered in one community or classroom. When
the design involves enough treated points that it is reasonable to estimate the
same functional form as for the controls, the RPDD essentially transforms into
one of the other pre—post designs—randomized experiment, nonequivalent
group design, or regression-discontinuity—depending on the method used to

assign units to treatment or control condition.

4. The Same Versus Different Pre-Post Measures

In general, the same variable is measured before and after the treatment
(matched measures), but different measures can be used. For instance, if one
is looking at the effect of an educational program, it might not make sense to
measure content-related performance on the pretest because students would
not be expected to know any of the content (and may not even understand the
questions). One might use a general measure of prior intelligence or academic
achievement (GPA, standardized achievement test scores) as the premeasure,
with a treatment content-specific outcome measure. Thus, pretest and posttest
in this case are different, or unmatched, measures. In Figure 14.1, the pre- and
posttest measures are still less similar. Whether matched or not, statistical
power is likely to be greater when the premeasure has a strong linear or

monotonic relation with the outcome variable.
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5. The Number of Covariates

In the simplest case, the RPDD uses a single pretreatment variable. But it
is also possible to use multiple pretreatment variables that can simultaneously
be entered as covariates in the model. The major problem with multiple
pretreatment covariates is that, because each covariate costs one degree of
freedom, using multiple covariates requires more control groups. However, the
use of multiple covariates when many control groups exist will be an important
mechanism for improving the statistical power and efficiency of the treatment
effect estimate.

THREATS TO VALIDITY

Selection Bias

Probably the most important threat to validity in the RPDD is the potential
for selection bias that stems from initial between-group differences that affect
the posttest and are unrelated to the treatment. The plausibility of such a threat
rests on the method used for assigning (or selecting) the treated group in the
RPDD. The method of assignment determines which traditional multiple unit
pre—post designs the specific RPDD is most like. If the RPDD units are
randomly assigned, the design is most analogous to a RE. In the RPDD case,
however, random assignment is not used to ensure probabilistic pretest equiva-
lence as much as to minimize the chance that a unit might be opportunistically
chosen because it is well-suited, politically favored, likely to be successful, or
any other number of factors that could bring about an apparent effect even if
the program is never administered. Random assignment helps to guard against
the many pretreatment correlates that might bias the outcome, wittingly or
unwittingly.

If the RPDD experimental unit is assigned solely on the basis of its
extremity on the pretreatment measure, this is analogous to a RD design
because the assignment is by means of an implicit cutoff rule. This is the case
with the Medicaid study as described in Figure 14.1. There, Congress allocated
Medicaid explicitly using an income cutoff rule. Note, however, that this is not
the case for other RPDDs constructed from the Medicaid data (shown in Figure
14.3) where, for instance, 1964 average physician visits constitute the pretest
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and 1965 values the posttest. Even though in this case the experimental group
also turns out to be the fowest in pretest average physician visits, physician visits
were not the basis for the allocation of the Medicaid treatment.

Where the RPDD is structured like the RE or the RD designs, the selection
bias problem is largely mitigated by the fact that we know perfectly the rule that
determines the assignment to treatment (probabilistic in the RE case and
cutoff-based in RD). Just as in those designs, only a factor that correlates
perfectly with the known assignment rule poses a legitimate selectivity threat.
Of course, as the Medicaid study shows, there can be many such factors because
the same implicit cutoff (i.e., the poverty rate) is used to allocate multiple
programs.

This should be contrasted with the third assignment strategy-—uncon-
trolled assignment—that yields an RPDD most analogous to the NEGD. In this
case, the rule for assignment (i.e., selection) of the experimental unit is not
explicit or able to be controlled for perfectly in the statistical model. As a
consequence, one is less sure that the observed treatment effect is attributable
to the treatment as opposed to any of the many possible selection factors that
might also affect the posttest. For instance, assume a study in which there are
ten possible treatment sites for some presumably beneficial treatment. Further
assume that the selection of the experimental site is intensely political with each
site lobbying to be the first to receive the experimental. The city that is
ultimately selected is likely to differ in many ways from those that were not
selected. It may be more highly motivated, have greater resources, have more
political clout, and so on. If these (and other) factors can affect posttest scores,
it will not be possible to say with great confidence whether any observed
treatment effect is a result of the treatment or of these inherent differences
between this city and the controls. Measuring all cities, including the experi-
mental, on a pretest is likely to improve our inferential ability because posttest
differences can be adjusted for pretest ones, but our experience with such
adjustments for selection bias warns us that we should be cautious about
attaching too much credibility to treatment-effect inferences in this case.

In an ideal situation, the demonstration site for a pilot program ina RPDD
would be chosen purely at random, perhaps in a public lottery. Although with
an N of 1 in the experimental group one would not be getting the benefit of
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plausible pretreatment equalization, one would be reducing the plausibility
that a systematic difference on other variables not only determined the choice
of the pilot site, but also determined the exceptional departure from expectancy
on the outcome variable.

The discussion so far has assumed that the experimental unit was not
selected after its eccentricity on the outcome variable was known. Nonetheless,
that possibility needs discussion. Consider a case in which ten cities have
measures on HIV-positive rates over successive years, and one notices that one
of them is exceptionally far below expectancy for the second year. The inter-
pretive problem is that each city has had AIDS prevention programs, all slightly
different, so that there is an “experimental program” to be credited with the
effect, no matter which city is exceptional, even if that exceptionality is a result
of chance.

Although such interpretive opportunism is to be discouraged (especially
if it is disguised from the reader), the strategy of locating a “truly exceptional”
city (or site) first on the basis of posttest scores, and then speculating on what
“caused it” should not be prohibited entirely. But in this case, the ordinary
p-value for a given t-value cannot be used. Instead, a correction on the order
of that for “error-rate experimentwise” is needed. The simplest approach would
be to use a Bonferoni correction of the p-values (Darlington, 1990, pp. 250—
257; Dunn, 1961; Ryan, 1959, 1960). If for a specified in-advance site, for a given
df (e.g., df = 8 for the ten cities assuming a linear fit) a t-value of 2.306 is
required for p < .05, when we want a comparable p-value (i.e., 1/20 for testing
the exceptionality of any one of the ten points from the regression line deter-
mined by the nine others (not specifying which one in advance), we need a
t-ratio corresponding to 1/(20 x 10) or 1/200, or p < .005.

The RPDD, unlike other quasi-experiments, does not require pretest
equivalence between the treated group and the controls. The treated group
theoretically could come from anywhere along the pretest continuum. The
design rests on the assumption that the treated group posttest mean does not
differ significantly from the regression line prediction. As a consequence, the
traditional concerns about selection bias take on a slightly different form in
this context. Here, the key issues are whether the control groups yield an
unbiased estimate of the true population regression line and whether the
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treatment unit is a member of the control group population. This could be
assured by randomly sampling control groups from the population, a circum-
stance that will not be feasible in many situations. If the sample of control
groups is not representative of the theoretical population or the regression line
is incorrectly estimated, the estimate of the treatment effect will be biased.
There is no solution to this problem, although it might best be minimized by
selecting many control groups with wide pretest variability. For instance, in
their study of schizophrenics, Fleiss and Tanur (1972) gave this advice for
selecting control groups:

A more efficient approach would call for the identification of many of the
factors that distinguish schizophrenics from normals: having a mental disor-
der, being hospitalized, having been treated with drugs some time in the past,
and so on. Samples of subjects from groups defined in terms of various
combinations of such factors would be drawn and studied. These samples
would have one feature in common: they would all consist of subjects who
are not schizophrenic. (p. 525)

Measurement Error and Regression Artifacts

The general problem of regression artifacts (or error in independent
variables) is taken care of in the RE or RD analogues of the RPDD, because such
regression is displayed and accounted for by the inclusion of Xin the regression
analysis (Cappelleri, Trochim, Stanley, & Reichardt, 1991; Trochim, 1984;
Trochim, Cappelleri, & Reichardt, 1991). Nonetheless, when choosing the
experimental unit involves unknown but systematic variables on which the
experimental group differs from the control group in ways that would affect
the posttest differentially from the pretest, one might mistakenly conclude that
the treatment was effective when, in fact, the apparent effect should be attri-
buted to measurement error and the resulting regression to the mean.

This is similar to the misleading interpretations that can occur in relation
to the “fuzzy” RD design (see chapter 13, this volume). If in fact, the choice of
the experimental unit had been based on a latent decision variable related to
the pretest by the addition of a pretest random error component, and to the
posttest by the addition of a posttest random error component, and if the award
of the experiment is based on extremity on the latent “true score,” then a
mistaken inference comparable to that graphed in Figure 13.3 is possible.
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The problem is a manifestation of the familiar effect of pretest measure-
ment error in NEGDs as described by Reichardt in Cook and Campbell (1979,
Fig. 4.4, p. 161). Reichardt showed that pretest measurement error attenuates
the within-group slope. In the RPDD, however, because there is only a single
experimental group point, it is impossible to estimate a treatment group slope
(and thus, the “slope” cannot be attenuated because of pretest measurement
error). However, the true control group regression line would appear to be
rotated clockwise slightly (assuming a positive relationship). The further the
experimental group is away from the control group pretest mean, the greater
will be the deleterious effects of such measurement error—bias will be greater.

The issue of how the treated unit is chosen is so central to the interpret-
ability of the RPDD that it warrants some belaboring. The central concern is
this: Can the treated unit be considered a member of the control unit popula-
tion prior to treatment, or does it come from some different distribution? If
we select the treated unit randomly or because of its extremity (implicit cutoff),
it is reasonable to infer that the unit is sampled from the control group
population. Here, just as in the RE or RD designs, estimates of treatment effect
will be unbiased by the measurement error. The regression of the posttest onto
pretest accurately describes the amount of regression to the mean expected for
all units, treated and control. But when selection of the treated group is not
controlled, it is plausible that the treated unit does not come from the control
unit population, but rather from some population that differs systematically
from the controls. In this case, we must assume that the two populations may
differ in their overall pretest averages and, as a consequence, measurement
error would affect the populations differently and there would be regression to
different population means, just as in the NEGD.

In any regression analysis, random measurement error on the pretest will
attenuate pre—post regression line slopes. This is not likely to be a serious
problem in the RPDD, because presumably the group means are less influenced
by random error than individual data. Nevertheless, this needs further investi-
gating. It is likely, for instance, that such an investigation would lead to the
conclusion that random-measurement error introduces greater bias in treat-
ment effect estimates when the treatment group pretest mean is located further
away from the overall pretest mean, where the attenuation most affects point
predictions. Traditional adjustments for random measurement error have to
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be modified for the RPDD and may be problematic, especially when there are
relatively few control points for estimating reliability.

However, we can state unequivocally that the deleterious effects of mea-
surement error will be less manifest in the RPDD than in an individual-level
NEGD analysis of the same data because the average values used in the RPDD
must (by definition) have less variability or error than the individual data on
which they are based. We expect that the power and efficiency of the NEGD
will be the upper limit for a comparable RPDD (because the loss of degrees of
freedom will outweigh the gains in reliability), but that measurement error will
be reduced and the bias in estimates because of it will be correspondingly less
in the RPDD.

Another regression artifact comes where the choice of the experimental
unit is triggered by the error component in the pretest. During 1956, Connecti-
cut endured an extreme crackdown on speeding and subsequently claimed a
dramatic reduction in fatalities. But we know that the 19541955 increase in
Connecticut’s traffic fatalities was the largest in its history and that the 1954~
1955 increase caused Governor Ribicoff to initiate the crackdown. Campbell
and Ross (1968) concluded that the purported effects were merely a return to
trend, a regression artifact. They also present the effect in the context of other
nearby states, as in Figure 14.8.

Were one to use the 1955 and 1956 data as an RPDD, one potentially could
get a significant pseudo-effect, as plotted in Figure 14.9.In this case, there are
too few control states to produce significance, but the danger is illustrated (the
actual t-value is -1.50, p = .26).

Instrumentation

As for any quasi-experimental design, the range of rival hypotheses should
be examined in case a significant effect is found. For pilot studies and dem-
onstration sites, one of the most frequently troubling will be that the program
effort has changed uniquely the measurement process between the pretest and
posttest for the experimental unit. The pressure on the law enforcement system
to show a good effect may lead, for example, to the downgrading of felonies to
misdemeanors (e.g., Seidman & Couzens, 1974). Equally frequently, program
attention to a problem such as child abuse may lead to increased thoroughness
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Figure 14.8. Traffic fatalities for five Northeastern states: 1951-1959.

of reporting, and a pseudo-increase (a pseudo-harmful-effect) specific to the
experimental unit.

Statistical Power

Although at first glance it appears that the RPDD design suffers from low
statistical power because of the relatively few pre-post points that are typically
used, group means are generally more stable and precise than within-group
data. Fleiss and Tanur (1972) compared a traditional pre-post ANCOVA with
the RPDD analysis using the same data and found that the ANCOVA results
were not significant, whereas the RPDD results were. They commented,

The difference between the analysis of covariance performed at the beginning
of this chapter, where significance was not found, and the regression analysis
just performed, where significance was found, is that predictability in the
former was determined by covariation within groups, whereas predictability
in the latter was determined by covariation between groups. (p. 525)
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Two major issues related to statistical power need to be investigated. First,
what is the power of thé RPDD design as it stands? This should be relatively
simple to determine and would make it possible to estimate the needed number
of control points given some initial estimates of probable treatment effect size
and desired level. An important factor in statistical power is where the treat-
ment group scores on the pretest continuum. Statistical power will decline as
the treated group pretest occurs further from the overall pretest mean. Second,
an analysis needs to be done of the power of the RPDD relative to within-group
ANCOVA alternatives. This should reveal whether one would ever gain statis-
tical power in the trade-off between within-group variability in the ANCOVA
framework and the presumed lower variability in the between-group-oriented
RPDD.

Violating Assumptions of Statistical Tests

The RPDD may also be subject to violations of the assumptions of the t-test
that is used. Fleiss and Tanur (1972) pointed out that the analysis is technically
valid only when the control groups used to estimate the regression are a random
sample from a population of such groups. The population in this case would
be hypothetical (there are an infinity of potential groups that could be entered
as controls) and as a consequence, this assumption can technically never be
met. Instead, as Fleiss and Tanur pointed out, “One must be sure to select
groups defined by the presence or absence of enough factors to assure that the
variability of their mean responses is high” (1972, p. 525).

One benefit that accrues in the RPDD derives from the usually higher
aggregate values used for the data. For instance, when group means are used
(as opposed to individual-level values), we can more reasonably expect that the
statistical assumption of normally distributed variables is likely to be met. This
is because of the well-known statistical property of the central limit theorem,
which holds that with sufficient sample sizes, sampling distributions are nor-
mally distributed. The advantage, of course, is that one needs to worry less
about this distributional assumption, which is critical to many statistical tests.

Local History

A key threat to internal validity in this design is “local history” (Cook &
Campbell, 1979). Whenever the treatment group consists of persons who are
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treated together (such as at the same site) and distinct from control group
persons, any factor in the setting that affects posttest performance can lead to
a pseudo-effect in the data. If treated persons receive multiple treatments, or
experience a markedly different setting from controls, or have a change in
instrumentation (e.g., clinicians change their implicit judgement standards at
the treatment site between pre- and posttest, but not at control sites), a
pseudo-effect can result. These threats are not as serious an issue for the control
groups because, with lots of such groups, setting variability is increased and the
potential for systematic bias declines.

External Validity

Finally, the RPDD is not strong in external validity or generalizability.
Although generalizing to other potential treatment groups that have the same
pretest level may be reasonable, it is impossible to know whether any observed
treatment effects would hold for groups with other pretest levels. Put another
way, it is impossible with this design to study treatment interaction effects. If
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the treatment effect changes for different pretest levels, it will not be possible
to know from the RPDD. Nevertheless, if the treatment group is typical of the
potential target treatment group of interest (especially if itis a unit randomly
sampled from the population of interest), it will be reasonable to generalize to
other similar target groups. One might not be interested in whether the
treatment might work for groups having markedly different pretreatment
levels (see the Fleiss and Tanur example).

CONCLUSION

The RPDD has a very specific potential range of applicability. It is limited to
contexts in which one has pre- and postmeasurement and multiple control
groups. It is strongest when applied to routinely collected multiwave adminis-
trative data, where it is either too costly to match individual cases or may not
be possible. Because such data are widely available and cost constraints a
constant factor in our society, it is likely that the RPDD would be widely
applicable. In fact, there are probably many instances in which the require-
ments of the design have already been met and for which a post hoc analysis
could be simply constructed.

The design has several important weaknesses that need to be anticipated.
Where few control groups are available, one is likely to have low statistical
power. It is recommended that a power analysis be routinely reported with any
analysis of the RPDD that fails to show significant treatment effects. In terms
of internal validity, there are several possible threats that could lead to pseudo-
effects in various situations. Care needs to be taken in selecting a heterogeneous
set of control groups. Whenever possible, the treated unit should be randomly
selected from the population. This will tend to minimize any deliberate selec-
tion factors that might threaten internal validity and is also likely to be the
variation that has the greatest statistical power. Failing that, selection of the
most extreme case is preferred over arbitrary or convenience-based selection,
especially when the same measure is used for before and after measurement.

The RPDD has great potential for enhancing our ability to conduct re-
search in natural social contexts. It is relatively inexpensive to apply where
appropriate administrative data exist. It is based on well-known statistical
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models that can be estimated with almost any statistical computing package. It
extends our ability to evaluate the effects of community-level programs where
other designs are often not readily available. Although much work is yet needed
to explore the implications and variations of the RPDD, it is clearly a useful
addition to the methodological tool kit of the researchers of the experimenting
society.

NOTE: This is an abridged version of an original article, “The Regression Point Displacement
Design for Evaluating Community-Based Pilot Programs and Demonstration Projects.” The
complete version can be accessed through the World Wide Web at the following address: http://tro-
chim.human.cornell.edu/research/rpd/rpd.htm



