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Cutoff-based clinical trial designs are geared towards balancing ethical and scientific con-
cerns when it is deemed unethical or infeasible to randomize all patients to study treatments.
In a cutoff-based design with randomization, patients who are the least sick based on a
guantitative baseline indicator are assigned the control treatment, patients who are the most
sick based on the same indicator are assigned to test treatment, and patients who are
moderately sick based on the indicator are randomly assigned. Simulations were conducted
to examine statistical efficiency and potential bias for designs with varying amounts of cutoff-
based assignment and randomization. All design variations yielded unbiased estimates of
a main treatment effect and a linear interaction effect. While randomization tends to iead to
greater efficiency (or lower standard errors of treatment effect), the correlation between the
binary treatment variable and baseline assignment variable complietely determines the ef-
ficiency of a design. Key words: clinical trials; randomized control trials; randomization; cutoff-
based designs; experimental designs; quasi-experimental designs; methodology; statistical

efficiency; bias. (Med Decis Making 1995;15:387~394)

The randomized clinical trial (RCT) is generally re-
garded as the best available method for assessing the
efficacv and toxicity of treatments. Randomizatioh, in
theory, serves at least three important purposes: 1) it
avoids known and unknown biases on the average in
assigning patients to treatment groups; 2) it helps con-
vince others that the trial was conducted properly;
and 3) it is the basis for the statistical theory that
underlies hvpothesis tests and confidence intervals.?
There has been ample discussion, however, that the
traditional RCT may be unethical when strong a priori
evidence suggests that the experimental (test) treat-
ment may be more effective than the standard (control)
treatment and when the disease under investigation
is potentially life-threatening.?* Examples include the

‘recent controversies about the use of extracorporeal

membrane oxygenation (ECMO) in neonatal intensive
care, the release of drugs for AIDS, and the availability
of drugs for cancer treatment that have questioned the
ethics of implementing RCTs.®® For such life-threat-
ening diseases, some patients most in need of the
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presumably more beneficial test treatment, and who
are desperate enough to undertake its risk, are denied
the test treatment; some patients who are less in need
of the test treatment, and who are currently well enough
not to chance its side effects, are offered the test treat-
ment.

The Role of Cutoff-hased Designs

This article offers an alternative design strategy—
the cutoff-based RCT-—intended to balance ethical
and scientific concerns when it is deemed unethical
or infeasible to randomize all patients to study treat-
ments.?!® The cutoff-based RCT incorporates a need-
based, clinically-valid baseline assignment covariate,
which is at least ordinal in scale, so as to combine
random assignment with cutoff-based assignment. In
a basic cutoff-based RCT, patients who are the least
sick, as measured by their baseline scores falling below
a cutoff value on a baseline indicator (e.g., severity of
illness), are automatically assigned to control treat-
ment; patients who are the most sick, as measured by
their baseline scores being above a higher cutoff value,
are automatically assigned to test treatment; and pa-
tients who are moderately ill, as measured by their
baseline scores falling between the two cutoff values,
are randomly assigned. The major advantage of the
cutoff-based RCT is that it seeks the “best of both
worlds”—Dby allowing a new treatment to be given to
those most in need or most willing to assume risk,
while capitalizing on some of the efficiency and sta-
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tistical properties of the conventional RCT.

Such a cutoff-based RCT has been used in the Co-
caine Treatment Study at the University of California
at San Francisco'! in order to resolve ethical issues as
well as to maintain scientific validity. This study, which
recruited about 500 men and women aged 21 to 58
living in California, has focused on whether persons
dependent on cocaine assigned to inpatient treatment
will have better outcomes (and how much better) than
they would if they had received outpatient treatment
instead. Project staff developed a baseline measure,
which was based on clinically sensible criteria, that
consisted of four subscales: employment and legal sta-
tus; family relationships and recovery environment;
alcohol and drug use history; and psychological sta-
tus. These four subscales were weighted and added
in a clinically meaningful way to form a baseline com-
posite indicator. Patients who had higher scores on
this composite measure were assumed to be more
severely addicted to cocaine and hence were more in
need of the intensive treatment provided by the in-
patient program; low scorers were assumed to manage
more easily as outpatients than high scorers. An out-
come could be the same or different measure.

For historical and fundamental reasons, this paper
also considers the single-cutoff design with 'ne ran-
domization—the regression-discontinuity (RD) de-

sign—intended to balance ethical and scientific con-

cerns when it is deemed unethical or infeasible to
randomize any patient.'?'s In the classical RD design,
patients who are not as sick (as measured by baseline
scores falling below the cutoff value on a baseline in-
dicator) are automatically assigned to control treat-
ment, while those who are more sick (as measured by
baseline scores above the cutoff value) are automati-
cally assigned to test treatment. For both the cutoft-
based RCT and the RD design, treatment assignment
could be constructed so that lower baseline scores
indicated more illness (e.g., immunodeficiency scores
for AIDS patients).

Besides addressing the ethical dilemma, cutoff-based
designs (with or without randomization) may in some
situations address a few additional criticisms of con-
ventional RCT? Relative to the conventional RCT, the
cutoff-based RCT and RD design may be more con-
sistent with program and public policy objectives, as
the test treatment is assigned to the clinically-relevant
target population. Because clinically appropriate fac-
tors motivate equitable assignment of severely ill pa-
tients to test treatment and significantly less ill pa-
tients to control treatment, cutoff-based designs may
reduce the numbers of post-assignment dropouts and
post-assignment “treatment switching.” Because the
patients who are the most sick and the least sick may
be included in a cutoff-based study but may be ex-
cluded in a fully randomized study, cutoff-based de-
signs may have their results generalized to a broader
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base of patients, may be more likely to evaluate rele-
vant confounders, and may offer a lower cost per pa-
tient enrolled.'®

Another important design consideration, especially
relevant at this time when national priority has been
placed on a more efficient and cost-effective health
care system, is the ability of a design to allocate re-
sources more efficiently and to contain cost as the
trial progresses. Cutoff-based variations can be con-
structed, as is done in this paper, to allocate resources
more effectively.

The RD design, and especially the cutoff-based RCT,
which also preserves some of the benefits offered by
randomization, can provide a fruitful area of clinical
research for developing and evaluating methods that
take into account the clinical realities of treatment
delivery, provided that scientific validity is not seri-
ously jeopardized. Trochim and Cappelleri® provided
an overview of cutoff-based assignment, gave an illus-
trative example, and conducted Monte Carlo simula-
tions of an analysis-of-covariance model based on six
cutoff-based RCT variations, the single-cutoff RD de-
sign, and the traditional RCT. The cutoff-based designs
vielded unbiased estimates of treatment effects, but
the estimates differed in efficiency, with the RCT being

" most efficient and the RD design being least efficient.

Based on unpublished work,’® we provide a comple-
mentary presentation of a different set of cutoff-based
RCT variations and extend the population model to
include a linear treatment-by-baseline interaction term
as well as a main-effect term. We also expand upon
ethical considerations.

Methods

SIMULATION OF THE DESIGNS

Monte Carlo simulations were conducted for five
interval-related RCT variations and the classic RD de-
sign that may be useful in different medical and health
research settings. Simulations were also conducted for
the traditional RCT so that it could be compared and
evaluated with the cutoff-based designs with respect
to statistical efficiency and potential bias. These sim-
ulations were offered as a way to demonstrate poten-
tially useful alternatives illustrating some key princi-
ples of combining different amounts of cutoff-based
assignment and randomization.

All of the simulation models used the same variable
(e.g. severity-of-illness indicator), measured before and
after therapy. Higher scores indicated greater iliness.
All models were two-group, treatment-control de-
signs. Each model gave an overall probability of as-
signment of 0.50 to each treatment group. In addition,
the five cutoff-based RCT models also imposed a 50/
50 assignment rule within the interval of randomiza-
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tion. In all simulations, an assignment baseline co-
variate (X} was generated for each subject such that
each value of X was independently and identically
normally distributed with a mean of 50 and a variance
of 25. Random measurement error in the outcome
measure (e,) was considered and taken to be normally
distributed with a mean of 0 and a variance of 4. The
treatment group variable was a dummy-coded variable
{Z) with a value of 1 for the experimental (test) treat-
ment and 0 for the standard (control) treatment.

For each model, the outcome variable (Y) was con-
structed using the equation

Y =X+ (=5Z + (—2)X—~501Z + ey

which incorporated both a five-point main effect and
a two-point interaction effect at the mean score of 50.
A (negative) five-point main effect means that all par-
ticipants in the test-treated group (Z = 1) benefitted
by having had their outcomes lowered by five points.
A (negative) two-point interaction effect means that
subjects in the test-treated group were expected to
have a further benefit (reduction) by two points for
everv one-point increase over 50 in their baseline scores.

All seven models in the regression analysis had their
treatment effects estimated at a common point—
namely, at the baseline mean of 50—to allow for a fair
comparison and evaluation of the seven models. Each
of the seven models was simulated 100 times, which
led to 700 separate simulation runs, where each run
contained a sample size of 1,000. .

SPECIFICATIONS AND RATIONALES FOR TREATMENT
ASSIGNMENT

The clinical rationales (when appropriate) and the
simulation specifications for group assignment are
provided in this section. Figures 1-5 depict the five
cutoff-interval RCTs.

Model 1—The Traditional RCT

The traditional RCT served as the “gold standard”
against which the other models were compared and
evaluated. It is the only model discussed here that was
based entirely on random assignment. A standard nor-
mal variable (i.e., normally distributed variable with a
mean of 0 and a variance of 1) was generated and then
dichotomized at its mean of zero such that patients
with values greater than or equal to zero were assigned
to the test-treatment group (Z = 1) and patients with
values less than zero were assigned to the control-
treatment group (Z = 0).

Model 2—The Classic RD Design

This is the single-cutoff-point model with-no ran-
domization and cutoff value at 50. Thus, all patients
who scored at or above 50 were automatically assigned
to test treatment (Z = 1), while all patients who scored
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Ficure 1. Cutoff-based randomized clinical trial with a narrow in-
terval.

below 50 were automatically assigned to control treat-
ment (Z = 0).It is the only model discussed here based
strictly on nonrandom assignment.

Model 3—Cutoff-based RCT with a Narrow Interval
(Figure 1)

The assignment criteria in a cutoff-based design must
be strictly followed without exception; if they are not,
the treatment-effect estimate will be biased.'*'” Using
an interval of randomization instead of a single cutoff
value reduces the chance of misassigning some sub-
jects to the other treatment either by mistake or as a
result of pressure from physicians, clinical staff, or
patients or their families.

Two cutoff values defined the interval of randomi-
zation. The cutoff values of 49 and 51 were chosen so
that a relatively narrow interval width symmetrically
surrounded the cutoff value of 50. About 25% of all
patients fell within this interval of randomization. Pa-
tients who had baseline scores between 49 and 51 were
automatically randomly assigned to either treatment
group with equal probability. All subjects who scored
51 or higher were automatically assigned to test treat-
ment, while those who scored 49 or lower were as-
signed to control treatment.

Model 4—Cutoff-based RCT with a Wide Interval
(Figure 2)

Again, two cutoff values defined the interval of ran-
domization. The cutoff values of 48 and 52 were chosen
so that a relatively wide interval symmetrically sur-
rounded the cutoff value of 50. About 47% of all pa-
tients fell within this randomization interval and hence
all subjects with baseline scores between 48 and 52
were randomly assigned. All subjects who scored above
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Figure 2. Cutoff-based randomized clinical trial with a wide inter-
val.

that interval were assigned to test treatment and those
who scored below that interval were assigned to con-
trol treatment.

Model 5—Cutoff-based RCT with Five Different
Proportions within the Interval (Figure 3)

This model was also a two-cutoff, single-interval RCT.
Cases within the interval, however, were randomly di-
vided into five equal subgroups where each subgroup
had a different probability of assignment to the new
technology (0.25, 0.33, 0.50, 0.66, 0.75), so that about
half of all randomized cases were allocated to each
treatment. Interval endpoints at 48.5 and 51.5 were
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Ficure 3. Cutoff-based randomized clinical trial with five different
proportions within the interval.
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selected to bracket a relatively medium-sized cutoff
band.

Situations exist where patients accrue over time, the
test treatment involves inpatient rehabilitation, and
the control treatment involves outpatient rehabilita-
tion for the treatment of, say, cocaine addiction. Hos-
pitals can be put in a difficult financial position if there
is either a shortage or a surplus of beds during a pro-
longed period of time. Hospital administrators can deal
with this potential problem by having the flexibility to
make adjustments over time in the proportions of in-
coming patients randomized. When the cutoff strategy
places too many patients in hospital beds during a
period of time, the proportion of incoming patients
randomly assigned to inpatient care can be reduced;
conversely, when the cutoff strategy places too few
inpatients in beds, the proportion can be increased.
Similarly, if the proposed treatment makes more pa-
tients ill or makes more patients suffer adverse events
than expected, then the proportion of incoming pa-
tients randomly assigned to the proposed treatment
can be lowered. Another application is when five in-
vestigators or five research sites use different proba-
bilities of random assignment, or when there is a single

. site that over time (e.g., five months) systematically

changes (e.g., evervy month) the probability of random
assignment as patients accrue and more treatment
information is gathered.

Model 6—Cutoff-based RCT with Two Interval Widths
(Figure 4)

This design variation explored the possibility of us-
ing two random-assignment intervals with different
widths. One cutoff interval had its endpoints at 48.5
and 51.5; the other cutoff interval had its endpoints at

SR\
T
| \%&

48 48.5 50 51.5 52
Baseline

Figure 4. Cutoff-based randomized clinical trial with two interval
widths.
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FiGuRe 5. Cutoff-based randomized clinical trial with three interval
centers {48.5, 50.0, 51.5).

48 and 52. Both intervals were symmetric around the
baseline mean of 50. Because the two intervals had
different widths, they included different numbers of
randomized patients, with the wider interval contain-
ing more randomized patients.

One clinical rationale for Model 6 stems from a po-
tential need for the study's investigators to examine
the effects of using different interval widths at different
treatment sites or at different points in time as patients
accrue. This type of design may be useful for different
hospital sites with varying amounts of resources to
accommodate a novel treatment or an experimental
inpatient therapy. Like Model 5, Model 6 may also
prove beneficial for a given site where periodic ad-
justments over time are desired in the number of in-
coming patients randomized. In the early months of
the study, for instance, the interval of randomization
could be fairly wide. As evidence for the efficacy of the
new treatment becomes stronger, the width of the
interval could be periodically compressed in order to
place more of the sickest patients who are accruing
in the currently more efficacious treatment.

Model 7— Cutoff-based RCT with Three Interval
Centers (Figure 5)

This design variation involved moving the entire in-
terval up or down on the baseline scale while pre-
serving the same interval width. Each interval could
be asymmetric with respect to the baseline mean. Model
7 incorporated three cutoff windows where each in-
terval covered three units on the baseline scale. The
cutoff intervals were taken at (47, 50, (485, 51.5}, and
(50, 53], with their respective interval centers at 48.5,

Features of Cutoff-based Designs e 391

50, and 51.5. The baseline value at which treatment
effects were estimated was 50, the average of the three
interval centers.

If there are too few inpatients occupying hospital
beds during one period or if evidence accumulates
that even more strongly favors the test treatment, the
entire interval could be moved down on the baseline
assignment scale, thereby allowing for a greater area
under the normal curve at the right of the interval for
assigning incoming patients to inpatient treatment or
test treatment. Conversely, if there are too many pa-
tients occupying beds during a period or if evidence
accumulates that favors the control treatment, the en-
tire interval could be windowed up. In a multi-site
study, a situation may arise when different sites with
different resources can handle different proportions
or “mixes” of treatment and control cases. A particular
facility, for instance, may have more surgeons who
specialize in the novel test treatment and thus may
be able to have a higher proportion of cases assigned
to that condition.

Resuits

Table 1 shows the simulation results. The results
that appear are average-treatment-effect estimates and
their average standard errors, averaged over 100 runs.
The simulations empirically demonstrate that all the
models yielded unbiased estimates of both a (minus)
ﬁve—poiht main treatment effect and a (minus) two-
point interaction effect.

Efficiency, as measured by the average standard er-
rors, was more of an issue than bias for these gener-
ated models. Table 2 shows the ranks of the average
standard errors, where a rank of 1 signifies the lowest
standard error and 7 signifies the highest, along with
the percentage of cases randomly assigned and the
average correlation coefficient between baseline and
treatment group variable, denoted by R(X, Z). This cor-
relation is one way to determine the nature and degree
of multicollinearity, which causes the standard error
of treatment effect to become inflated, inherent in all
of the proposed models except the RCT model (Model
1). The ranks for the standard errors of a main effect

Tahle 1 e Simulation Results of the Models

Average Treatment Average Standard

Effect Error
Main Interaction Main Interaction
Model 1 -5.010 —2.000 0.063 0.020
Model 2 -5.000 -2.000 0.105 0.033
Model 3 -5.011 -2.003 0.097 0.030
Model 4 -5.002 —2.001 0.083 0.025
Model 5 ~5.002 -2.002 0.090 0.028
Model 6 - 4.996 -2.002 0.086 0.027
Model 7 —4.990 -2.002 0.085 0.026
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Tahle 2 e Ranks of Standard Errors, Percentages Randomized,
and Correlations for the Models

Rank of Percentage
Standard Error Randomized R(X, Z)*

Model 1, traditional RCT 1 100.00 .00
Model 4, wide interval 2 47.14 .65
Maodel 7, three different

centers 3 33.98 67
Model 6, two widths 4 41.65 .68
Model 5, five different

proportions 5 36.16 71
Model 3, narrow interval 6 24.72 .75
Modet 2, classic regres-

sion-discontinuity 7 0.00 .79

* Average correlation coefficient between baseline (X) and treatment group
(Z) variables.

were in full agreement with the ranks for the standard
errors of an interaction effect.

Table 2 shows that those models that had more
individuals randomly assigned tended to achieve greater
efficiency (or lower standard errors of treatment ef-
fect). But what completely determines efficiency is the
correlation coefficient, R(X, Z), of each model. The de-
sign structure of Model 7 reduces the linear associa-
tion between X and Z, as measured by RiX, Z), slightly
more than do the design structures of Models 5 and

6—even though the latter two models had more pa-,

tients randomly assigned. It should be noted, though,
that Model 7 (with three interval centers) was keenly
sensitive to the point where the treatment effect was
estimated. If each of the three intervals used its own
interval center (48.5, 50.0, 51.5) to estimate the treat-
ment effects, with the three separate results then pooled
into one overall analysis, then the same design (al-
though still unbiased) would have actually rendered
the largest standard error.

Discussion

This simulation study suggests that the interrela-
tionship between the baseline measure and the treat-
ment group variable in cutoff-based variations reflects
the precision of their treatment-effect estimates. The
intrinsic way that a cutoff-based RCT reduces this in-
terrelationship takes precedence over the percentage
of randomized cases. It is worthwhile to note that
more randomization of one design than another de-
sign does not necessarily imply that the design with
more randomization is more efficient. A reduced cor-
relation, however, is usually associated with an in-
creased percentage of randomized cases; everything
else being the same, more randomization necessarily
leads to greater efficiency.

Cappelleri and colleagues found that in order to
achieve the same power as the conventional RCT, ap-
proximately 2.75 times more patients are needed in

MEDICAL DECISION MAKING

the RD design; 2.50 times more patients are needed
in the (one-interval) cutoff-based RCT with 20% ran-
domization; 2.10 times more patients are needed in
the cutoff-based RCT with 35% randomization; and
1.70 times more patients are needed in the cutoff-
based RCT with 50% randomization. Therefore, the
lower power and efficiency of cutoff-based designs
could increase rather than decrease the complexity,
duration, or expense of controlled clinical trials.'®

The most critical step in the statistical analysis of
cutoff-based designs is correctly modeling the true
functional relationship between the baseline covariate
and the outcome variable,'* which makes the statis-
tical analysis more challenging. Because data for both
groups are not available across the entire range of the
baseline—outcome distribution, cutoff-based designs
require regression lines to be extrapolated into the
region where there are no observed data. Cappelleri
and Trochim® mentioned ways to help arrive at the
correct functional form. One recommended strategy
is to use a polynomial, backward-elimination regres-
sion approach that tests interaction effects before main
effects. An incorrect functional form will lead to a biased
treatment effect.'>'*!” A biased estimate will under-
mine scientific validity and will itself inflict a serious
ethical consequence that may outweigh other ethical
considerations. In the set of simulations, the true func-
tional form between baseline and outcome was cor-
rectly modelled with linear terms.

The same set of regression assumptions (and rem-
edies for their violations) used in the traditional RCT
also applies to the cutoff-based design. Like the tra-
ditional RCT model, the cutoff-based regression model
can have a binary outcome>'??

If this set of simulations incorporated random mea-
surement error in the observed baseline covariate (X},
the linear interaction effect in both the cutoff-based
designs and the traditional RCT would be attenuated
by a factor of the reliability coefficient, but the main-
effect estimates with both strategies would remain un-
biased.**** Random measurement error in the baseline
indicator (and the regression to the mean that results)
is not a problem in the cutoff-based design because,
like the conventional RCT, it incorporates a perfectly
known assignment rule. And this rule is fully modeled
and hence accounted for in the cutoff-based analysis.
The simulation results on unbiased estimates of main
effect confirm the theoretical work in Goldberger®s=¢
and Rubin®*** that analytically proved that the main-
effect estimate is unbiased in cutoff-based designs,
whether or not a true linear interaction term is in-
cluded and whether or not the baseline is measured
with random error.

In the United States, there is an ethical need as well
as a legal requirement to inform all participants about
the clinical trial and to obtain their written consent
before randomization or treatment allocation. The
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randomized, cutoff-assigned treatment, and cutoff-as-
signed control groups in a cutoff-based RCT should
have their own separate informed consent forms, with
each form going into specific details. This would make
administrative and logistical matters simpler and clearer.

Each of the three consent forms, however, should
cover the general elements of informed consent,* in-
cluding full disclosure of the method of treatment as-
signment. All prospective participants should be told
that the patients who are sickest will receive the ex-
perimental treatment, those who are the least sick will
receive the standard treatment, and those who are
moderately ill will be randomized to either treatment.
They should also be informed that the benefit of the
experimental treatment appears promising but its true
relative benefit remains inconclusive, which is why the
study is being undertaken. Patients receiving the stan-
dard treatment should be assured that they are re-
ceiving the best proven therapy available to them in
any clinical setting where the intervention is still viewed
as experimental. These patients should therefore be
likely to give their informed consent.

Each patient (and physician) will know which one
of the three risk profiles he or she belongs to before
being given a consent form. Only randomized patients
and their physicians will be blinded, so a cutoff-based
RCT would be a partially-blinded design. It is the life-
saving potential of the intervention that may make the
traditional view of the patient—physician relationship
powerful enough to override the benefit of the most
rigorous and efficient properties afforded by a double-
blinded RCT. The resulting ethical obligation placed
on physicians to their critically ill patients, who are
extraordinarily dependent on their physicians, will then
take precedence over societal benefits.

singer®® discussed problems with using stopping
rules as a way to optimize or balance the scientific
value to society. In the context of using warfarin to
prevent stroke in nonrheumatic atrial fibrillation, Singer
criticized stopping a RCT early because the observed
treatment effect may be made more imprecise and
may result in possible bias towards a larger benefit
than if the RCT had continued and more events had
accumulated. A cutoff-based design {especially a cut-
off-based RCT) without stopping rules can, in princi-
ple, achieve unbiasedness and provide more precise
estimates than a traditional RCT with stopping rules.

Truog?®! critiqued the ethical dilemmas raised by the
Harvard Neonatal ECMO Trial. Troug concluded that
the ideal study design for the proposed pediatric ECMO
trial should both maintain the essence of the tradi-
tional patient—physician relationship and provide pa-
tients in the trial with the opportunity to be offered
other potentially life-saving and rapidly developing
technologies. He proposed a prospective observational
study with physicians completely determining the
treatment(s) for their patients. By offering potential
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advantages in terms of ethics, timeliness, attrition, and
flexibility of assignment to study treatments as pa-
tients accrue, as well as the ability to offer an unbiased
estimate of treatment effect, a cutoff-based design could
be a suitable alternative in a pediatric ECMO trial.

Cutoff-based designs should not replace the tradi-
tional RCT in the great majority of circumstances when
there are no objections from either research subjects
or clinicians stemming from ethical conflicts regarding
the treatments under investigation. Creative ap-
proaches that are completely randomized and ethi-
cally sensitive should be employed whenever possible,
as was done in a study of the chronic left ventricular
assist system.** But some believe®?® that the balance
shifts when there is strong {though still inconclusive)
evidence mounting that the experimental therapy is
potentially life-saving. It is in these situations where
ethical issues may prevent complete randomization
from being employved that a cutoff-based design, es-
pecially a cutoff-based RCT, should be a very attractive
alternative. As such, although we compared cutoff-
based designs with the traditional RCT—the “gold
standard” —they should be more fairly compared and
evaluated against nonrandomized designs. When
compared with nonrandomized designs, cutoff-based
designs (especially the cutoff-based RCT) are among
the mdst scientifically valid and ethically sensitive op-
tions available.

The authors are grateful to Harry P. Selker, MD, MSPH, for en-
couraging them in this endeavor and for his editorial comments. They
also appreciate the vaiuable input from the reviewer, Judy Tesnow,
and Joni R. Beshansky, RN, MPH.
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