A cutoff-based randomized clinical trial couples cutoff-based assignment on an appropriate
covariate with random assignment to help balance ethical and scientific concerns in certain
situations. A statistical power algorithm based on the Fisher Z method is developed that is
particular to and inclusive of cutoff-based random clinical trials and the single cutoff-point
(regression-discontinuity) design, which has no randomization. This article quantifies power
and sample size estimates for varying levels of randomization and cutoff-based assignment.
Although more randomization engenders greater statistical power, less randomization requires
a much larger increase in sample size for small treatment effects.
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I n principle, the conventional or traditional randomized clinical trial
(RCT) provides the most statistically powerful and scientifically
rigorous method for comparing the efficacy of treatments. In recent years,
however, ethical concerns about the RCT have been raised when strong
a priori information exists that the test treatment is more beneficial than the
control treatment. Trochim and Cappelleri (1992) presented a class of cutoff-
based RCTs that combines randomized assignment with cutoff-based assign-
ment to help balance scientific and ethical concerns in certain situations.

In a simple version of a cutoff-based RCT, subjects scoring below a cutoff
score on a baseline measure (i.e., the least severely ill) are automatically
assigned to the control-treated group, those scoring above a second, higher
cutoff (i.e., the most ill) are automatically assigned to the test-treated group,
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and those scoring in the interval between the cutoff scores (i.e., the moder-
ately ill) are randomly assigned to either group. Trochim and Cappelleri
(1992) also considered a single cutoff-point design with no randomization—
known as the regression-discontinuity (RD) design—whereby all subjects
scoring above a single cutoff value are automatically placed in one treatment
group, whereas all subjects scoring below the same cutoff value are automat-
jcally placed in the other group. When properly modeled, both the cutoff-
based RCT and the RD design give an unbiased effect of treatment (Berk and
Rauma 1983; Cappelleri et al. 1991; Trochim, Cappelleri, and Reichardt
1991; Trochim and Cappelleri 1992; Reichardt, Trochim, and Cappelleri
forthcoming).

More randomization engenders greater statistical power. Everything else
the same, a cutoff-based RCT with less randomization has lower power to
detect a treatment effect than a cutoff-based RCT with more randomization.
Moreover, statistical power is lower in a cutoff-based RCT than in a tra-
ditional RCT. The question becomes “How many more subjects are needed in a
cutoff-based RCT to reach the same level of power as the conventional RCT?”

Assuming a normally distributed baseline assignment variable with a
cutoff point at the mean, Goldberger (1972), who was most influential in
increasing our understanding on the efficiency and power of the cutoff-based
designs, stated that the RD design requires about 2.75 times more cases than
the RCT. He obtained this number by calculating the efficiency of the RCT
relative to the RD design, using the ratio of variances of the regression
coefficients for treatment, which is the reciprocal of one minus the square of
the correlation between treatment and baseline variables. Taking into account
a given treatment effect size and significance level, Cappelleri (1991) quan-
tified the statistical power and sample sizes needed for cutoff-based designs
with varying amounts of randomization and compared these results with the
conventional RCT.

Several approaches are available to conduct power analysis for correlation
and regression. One of the most popular in the behavioral and health sciences
is the approach in Cohen (1988), which is based on the noncentral chi-square
distribution. His method for multiple regression and correlation can be
applied to cutoff-based designs. However, in this article we construct our
own formulations that are specific to cutoff-based RCTs. Based on the Fisher
7 method (Darlington 1990), an algorithm and its program have been
developed that are particular to and inclusive of cutoff-based RCTs as well
as the RD design, and a general methodology was developed to compare their
power and sample size estimates to the conventional RCT (R. B. Darlington,
personal communication, July 20, 1990; Cappelleri 1991).
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THE CUTOFF-BASED POWER ALGORITHM

ASSUMPTIONS

Six basic restrictions were placed on the algorithm that generated sample
size and power estimates. First, to simplify matters, we assumed that the
baseline assignment variable X—on which treatment assignment is based in
cutoff-based designs—was normally distributed. This was also done to gen-
eralize across ‘baseline scales with different units of measurement. Second,
the algorithm assumed that X was the only regressor other than the dichoto-
mous treatment variable Z (Z = 1 if test treated, Z = 0 if control treated).

Third, the continuous outcome variable Y was formulated as -

Y=X+BZ+e,

where Y is the continuous outcome variable, B, is the treatment effect, and e
is the residual term. Outcome and baseline variables do not necessarily have
to belong to the same measure, and a transformation can occur on the original
values of each variable.

Fourth, because it was presumed that higher scores on the baseline
measure indicated a higher degree of illness, in the cutoff-based RCTs (and
RD design), higher baseline scores favored assignment to test treatment,
which was thought to be potentially more beneficial than control treatment.
The exact results would be obtained if lower scores indicated a higher degree
of illness. Fifth, the algorithm applied specifically to a one-sided test at the
.025 significance level for the null hypothesis of nonassociation, although it
tends to closely approximate the power of a two-sided test at the .05 level.
Finally, the overall proportion of cases in the two groups was .50. For the
cutoff-based RCTS, the proportion of cases within the interval of randomiza-
tion assigned to either treatment was also .50.

The power-analytic procedure can be modified to include baseline scores
following a given nonnormal distribution, additional covariates, and overall
and within-interval proportions different from .50.

THE FISHER Z METHOD

We defined PR(Y, Z) to symbolize the population partial correlation
between Y and Z (given X). The quantity PR*(Y, Z) can be thought of as the
unique Y variance explained by Z, expressed as a proportion of the Y variance
unexplained by X. As defined here, power is the probability of rejecting the
null hypothesis that the true partial correlation between the outcome and
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treatment variables equals zero if it in fact equals some prespecified alterna-
tive. Therefore, Hy: PR(Y, Z) = 0 and H;: PR(Y, Z) = pr, where pr is the
alternative value taken as the true partial correlation. Testing this null
hypothesis is tantamount to testing the null hypothesis of no treatment effect
because the partial correlation between outcome Y and treatment Z equals
zero if and only if the partial regression coefficient for treatment on outcome
equals zero. The procedure has the flexibility of being applied to tests of null
hypotheses other than nonassociation.

In the power analytic framework adopted, power and sample size esti-
mates depended on three factors. One factor is Fisher’s Z transformation,
abbreviated as fz. We used the formula,

fr=.51n LRI
[1-pr]
A second factor is the standard error of fz, denoted as se(fz), which for our
purposes can be written as

1
number of cases |- 4

se(fz) = V{

A third factor is the z value corresponding to a specified level of significance
and the direction of the alternative hypothesis.
Power can then be expressed by the formula

fz
1 —cdfn [se )~ z value] ,

where cdfn is the cumulative density function of a normal distribution.

COHEN’S CRITERIA FOR EFFECT SIZE

We placed emphasis on PR(Y, Z) because it determines effect size in
accordance with Cohen’s Case 1 formulation (Cohen 1988, 412-14). The
phrase effect size generally means “the degree.to which the phenomenon is
present in the population,” or the degree to which the null hypothesis is false
(Cohen 1988, 9-10). We followed the conventional operational definitions of
small, medium, and large effect sizes proposed by Cohen to categorize and
determine effect size.

If the relative effect of the test treatment improves outcome scores by
lowering them (meaning that there is a negative correlation between outcome
and treatinent variables), the three effect sizes translate to PR(Y, Z) = —.14
for a small effect size, PR(Y, Z) = —.36 for a medium effect size, and PR(Y,
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Z) = -.51 for a large effect size. Therefore, H,: PR(Y, Z) = pr=-.14fora
small effect, —36 for a medium effect, and —.51 for a large effect. The
procedure is not restricted to these values; it can be generalized to pr values
from-1to 1.

Rosenthal and Rubin (1982) translated correlation coefficients to bino-
mial effect size displays to arrive at a more intuitive way to understand the
magnitude of an experimental effect. For our purposes, pr values of —.14,
—.36, and —.51 corresponded respectively, to approximately 12%, 30%, and
44% improvement due to the test treatment.

EVALUATIVE STRATEGY TO COMPARE DESIGNS

An evaluative strategy needed to be implemented to compare the power
and sample size estimates of alternative designs that have varying amounts
of randomization and cutoff-based assignment. Power will remain un-
changed for a given effect size if the value of PR(Y, Z), which we call pr, is
held constant for all design types, because pr essentially determines power.
One suggested power analytic technique is to take the traditional RCT with
equal numbers in both treatment groups as the base design for comparison
purposes. This RCT was assumed to incorporate randomization over the
entire baseline measure.

There were two major reasons for using the equally balanced RCT as the
base design as opposed to any one of the cutoff-based designs. First, because
the RCT is more universally known and more intuitively understandable, it
is more natural to quantify and classify effect sizes in terms of the conven-
tional RCT. Second, it offers the most stringent comparison, so power and
sample sizes for the cutoff designs will be conservative approximations.

Because the RCT with equal numbers in the treatment groups defined and
partitioned small, medium, and large effect sizes, it should be remembered
that in what follows, pr values equal to —.14 for a small effect, —.36 for a
medium effect, and —.51 for a large effect corresponded to the 50/50 RCT
only. The other designs have, for a given effect size based on the 50/50 RCT,
partial correlations, whose absolute values were lower than those stated for
the 50/50 RCT. Hence their power also was lower.

THE MAIN FORMULAS

R. B. Darlington (personal communication, August 17, 1990) showed that
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1
Ji+H)'

with the sign depending on the relationship between Y and Z (given X), where

__ Ve +®)’
(PoPy) (1 - PoP,D?)

in which V(e) signifies the population residual Y variance, B, signifies the
population treatment effect, P, and P, signify the overall population propor-
tion of cases assigned to control treatment and test treatment, respectively,
and D signifies the difference between the population baseline means of the
two treatment groups.

The denominator of H changes with the type of design structure, but
remains fixed for a given design structure. Specifically, if the overall propor-
tion of test-treated cases is equal across the designs, then only D? varies across
designs. Therefore only the numerator of H, namely the ratio, V(e) + (B,?),
needed to be manipulated to arrive at the desired value for PR(Y, Z) upon
which power was based. Because it is this ratio itself that matters and neither
V(e) nor B, alone, without loss of generality, either V(e) or B, can be assumed
fixed to arrive at the desired value of PR(Y, Z) under the alternative hypoth-
esis. For example, if B, is fixed, then V(e), the residual Y variance when Y
is regressed on X and Z, can be algebraically determined to obtain the
appropriate value of pr. And pr determined fz which, along with the critical
z value, determined power. v

If B, is fixed to equal —1 (even though the treatment effect is almost surely
to be some other value), which was what we assumed in the computations,
the RCT requires that V(e) = 12.50 for PR(Y, Z) =-.14, V(e) = 1.68 for PR
(Y, Z)=-.36, and V(e) = .71 for PR(Y, Z) =—.51. In the cutoff-based designs,
both B, and V(e) took these same values, but pr was lower (in absolute value)
as the denominator of H decreased, because D* was no longer zero. The
program was written in GAUSS (Aptech Systems, Inc. 1988) and is available
on request.

PR(Y,Z)=+

CLASSIFYING SMALL, MEDIUM,
AND LARGE CUTOFF INTERVALS

A general classification scheme needed to be devised that defined cutoff-
based RCTs as having small, medium, and large cutoff intervals to indicate
the amount of randomization in a given cutoff-based RCT. The proposed
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strategy followed here defined the size of the cutoff interval in terms of the
increase in power and efficiency of a cutoff-based RCT relative to the non-
randomized, single cutoff-point (RD) design—but without letting too much
randomization introduce much loss in ethical and other practical concerns
that motivated the use of cutoff-based RCTs in the first place.

A slight degree of (relative) improvement in efficiency and power was
represented by a small-sized cutoff interval, a moderate degree of improve-
ment by a medium-sized cutoff interval, and high degree of improvement by
a large-sized cutoff interval—without foregoing much ethical or practical
loss. Specifically, small, medium, and large cutoff-interval RCTs are defined
here as intervals of randomization that include, respectively, 20%, 35%, and
50% of all cases. The power-analytic procedure can be generalized to allow
for varying cutoff widths and amounts of randomization.

RESULTS

Tables 1 and 2 show approximately how many subjects are needed in
cutoff-based designs. Everything else the same, wider cutoff intervals require
fewer subjects to achieve the same level of power. Table 3 shows approxi-
mately how many subjects are needed in the conventional RCT. The tables
show that the reduction in sample size is much more from a small to medium
effect size than from a medium to large effect size. This is because in the
Fisher Z method power is a nonlinear function of PR(Y, Z) and hence effect
size.

These three tables answer the question, “How many more subjects are
needed in a cutoff-based RCT (and a RD design) to reach the same level of
power as the conventional RCT?” Consider statistical power of .80. For a
small effect, the RD design, the small, medium, and large cutoff-interval
RCTs require, respectively, about 2.73, 2.50, and 2.10, and 1.70 times as
many cases as the RCT; for a moderate effect, about 2.54, 2.35, and 2.00, and
1.65 as many cases as the RCT; and for a large effect, about 2.34, 2.20, and
1.85, and 1.55 as many cases as the RCT. Sample size ratios are similar for
the other levels of statistical power.

Figures 1 through 3 depict the power curves of the five designs for the
three types of effect size. The shape of the power functions is virtually iden-
tical across effect sizes. The approximate sample sizes required are not linear
with respect to power: higher power values tend to warrant proportionately
larger total sample sizes.
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TABLE 1: Total Sample Sizes Needed for Cutoff-Based RCTs at the .025 TABLE 3: Total Sample Sizes Needed for RCT at the .025 Significance Level
Significance Level (one-tailed) (one-tailed)
Proportion of Cases in the Interval of Randomization Effect Size
20% Effect Size 35% Effect Size 50% Effect Size Power Small Medium Large
Power Small Medium Large Small Medium Large Small Medium Large 30 110 19 1
.35 130

.30 265 40 20 220 33 17 185 28 15 40 150 gg 1 :23

.35 315 47 23 265 40 19 215 33 17 45 175 28 15

40 370 54 26 310 47 23 255 38 19 50 195 a1 16

.45 425 62 29 360 53 25 295 44 22 ’ .55 225 35 18

.50 485 70 33 410 60 28 335 49 24 .60 250 39 20

.55 550 79 37 460 66 31 375 55 27 .65 280 43 22

.60 615 88 41 520 75 35 425 61 29 .70 315 47 24

.65 690 98 45 580 83 39 475 68 32 75 350 53 26

.70 775 110 50 650 93 43 535 76 36 .80 . 395 59 29

.75 870 123 56 730 104 48 595 85 40 .85 450 67 32

.80 985 138 " 63 830 118 54 675 96 45 90 525 77 37

85 1125 159 71 945 135 61 765 110 50 95 645 94 44

.90 1316 183 82 1110 155 70 895 127 58
.85 1626 225 100 1360 190 86 11056 156 71

RD design
1800 Small Effect Size 8
16001 O small cutoff-
interval RCT
TABLE 2: Total Sample Sizes Needed for the RD Design at the .025 Significant 1400+
Level (one-tailed) 8 A medium cutoff-
1751 -
Effect Size L2 12001 interval RCT
=
Power Small Medium Large g P large cutoff-
“ 10004 interval RCT
30 283 42 21 E
35 341 50 24 = 800
.40 403 58 28 RCT
.45 463 67 32 6004
.50 528 76 35
.55 598 85 40
.60 673 96 44 400,
.65 761 107 49
70 848 19 54 2001
75 953 134 60
.80 1078 150 68 T y T y T v ~ v
-85 1228 171 77 ’ 2 -3 .4 .5 .6 ) -7 .8 -9 1
.90 1433 199 89 Power
.95 1753 243 109

Figure 1: Total Sample Sizes Needed as a Function of Power for a Small Treat-
ment Effect (.025 level of significance, one-tailed test)
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RD design
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Figure 2: Total Sample Sizes Needed as a Function of Power for a Moderate
Treatment Effect (.025 level of significance, one-tailed test)

DISCUSSION

Trochim and Cappelleri (1992) discussed that the major benefit of cutoff-
based RCTs is the assignment of patients to treatment conditions based on
objective, clinically relevant factors. It was also stated that this benefit might
be partially offset by the larger samples required for cutoff-based RCTs
relative to the conventional RCT. In this article, we provide power tables and
curves that will help potential users of cutoff-based RCTs and the conven-

tional RCT, as well as of the RD design, to weigh the tradeoffs that accom- -

pany varying levels of randomization and to decide on which design to use.

Sample sizes are extremely sensitive to the expected treatment effect size.
Perhaps most important, there is a prominent increase in the total sample size
needed—especially for cutoff-based designs—when small treatment effect
sizes are expected. Because sample sizes would be drastically different de-
pending on the effect size, it is critical to obtain reliable prior estimates of
likely effect size. Clearly, these estimates would be likely to differ across
subject areas, settings, types of treatments, and so on. Results of Phase I and
II trials may be useful in estimating effect size more accurately.
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Figure 3: Total Sample Sizes Needed as a Function of Power for a Large Treat-
ment Effect (.025 level of significance, one-tailed test)
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