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The Regression-Discontinuity Design

William M.K. Trochim, Ph.D.

Introduction

It is unfortunate that the regression-discontinuity de-
signis sonamed. Ineveryday language both parts of the
term have connotations that are primarily negative. To
most people “regression” implies a move backwards or
areturn to some earlier, more primitive state, while “dis-
continuity” suggests an unnatural jump or shift in what
might otherwise be a smoother, more continuous pro-
cess. To a research methodologist, however, the term
“regression-discontinuity” (RD) carries no such nega-
tive meaning. Instead, the RD design is seen as a useful
method for determining whether or not a program or
treatment is effective.

The label “RD design” actually refers to a set of design
variations. In its simplest, most traditional form, the RD
design is a pretest-posttest program-comparison group
strategy. The unique characteristic that sets RD designs
apart from other pre-post group designs is the method by
which research participants are assigned to conditions.
In RD designs, participants are assigned to program or
comparison groups solely on the basis of a cutoff score
on a preprogram measure. Thus the RD design is distin-
guished from randomized experiments (or randomized
clinical trials) and from other quasi-experimental strate-
gies by its unique method of assignment. This cutoff
criterion implies the major advantage of RD design—it is
appropriate for targeting a program or treatment to those
who most need or deserve it. Thus, unlike its random-
ized or quasi-experimental alternatives, the RD design
does not require that potentially needy individuals be
assigned to a no-program comparison group in order to
evaluate the effectiveness of a program.

The RD design has not been used frequently in social
research. Most commonly, it has been implemented in
compensatory education evaluation, where school chil-
dren who obtain scores that fall below some predeter-
mined cutoff value on an achievement test are assigned
to remedial training designed to improve their perform-
ance. The low frequency of use may be attributable to
several factors. Certainly, the design is a relative late
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comer. It was first devised in 1958 (Trochim, 1984) and
initially discussed in the seminal work on quasi-exper-
imental research design by Campbell and Stanley
(1963, 1966). Its first major field tests did not occur
until the mid-1970s, when it was incorporated into the
nationwide evaluation system for compensatory educa-
tion programs funded under Title I of the Elementary
and Secondary Education Act (ESEA) of 1965
(Tallmadge and Wood, 1978).

In many situations, the design has not been used be-
cause one or more key criteria could not be met. For
instance, RD designs force administrators to assign par-
ticipants to conditions solely on the basis of quantitative
indicators, thereby restricting the degree to which judg-
ment, discretion, or favoritism may be used. Perhaps the
most telling reason for the lack of wider adoption of the
RD design is that at first glance the design doesn’t seem
to make sense. In most research, comparison (control)
groups are used that are equivalent to program groups on
preprogram indicators so that postprogram differences
may be attributed to the program itself. Because of the
cutoff criterion in RD designs, program and comparison
groups are deliberately and maximally different on pre-
program characteristics, an apparently insensible anom-
aly. Anunderstanding of how the design actually works
depends on at least a conceptual familiarity with regres-
sion analysis, thereby making the strategy a difficult one
to convey to nonstatistical audiences.

Despite its lack of use, the RD design has great poten-
tial for evaluation and program research. From a meth-
odological point of view, inferences that are drawn from
a well-implemented RD design are comparable in inter-
nal validity to conclusions from randomized experi-
ments. Thus the RD design is a strong competitor to
randomized designs when causal hypotheses are being
investigated. From an ethical perspective, RD designs
are compatible with the goal of getting the program to
those most in need. It is not necessary to deny the pro-
gram to potentially deserving recipients simply for the
sake of a scientific test. From an administrative view-
point, the RD design is often directly usable with exist-
ing measurement efforts, such as the regularly collected
statistical information typical of most management in-
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formation systems. The advantages of the RD design
warrant greater instructional efforts by the methodolog-
ical community to encourage its use where appropriate.

The major focus of this article is to discuss the applica-
bility of the RD design to health evaluation. The design
seems especially suitable for many health contexts be-
cause of the abundance of quantitative indicators and
information data bases, as well as the trend toward great-
er accountability through the use of specific quantitative
variables as the basis for allocating health resources. In
addition to the traditional reliance on quantitative indi-
cators in medicine (e.g., blood pressure readings, tem-
perature, pulse, severity of symptomatology) and psy-
chiatry (e.g., MMPI scores, DSM classifications), there
is increasing reliance on quantitative information in the
Medicaid and Medicare reimbursement systems, in the
movement toward greater quality and efficiency of hos-
pital care, in the development of the Diagnostic-Related
Groups (DRG) classification systems, in the nursing
home quality of care movement, and in many other
health fields. To the extent that these quantitative indi-
cators are used or can be used in connection with cutoff
values for determining eligibility for programs, treat-
ments, or other resources, the RD design may be the
most appropriate and feasible strategy for evaluation.

This article will describe the basic RD design and ex-
amine the variations that may apply to health contexts.
A major goal is to provide health administrators and
evaluators with enough information to judge intelligent-
ly whether it is feasible to use an RD design to assess a
specific evaluation problem. A comprehensive discus-
sion of the statistical analysis of the RD design is outside
the scope of this work, but a general analytic model will
be presented, and the major analytic issues will be dis-
cussed. Because RD designs have not been applied
formally in health contexts, the statistical analysis is
illustrated using data taken from an evaluation of a com-
pensatory educational reading program, but the proce-
dures should be directly generalizable to data collected
in health fields.

The Logic and Structure of RD Designs

The basic RD design. The term “basic RD design”
refers to the design as it was originally conceived and
discussed. In Campbell and Stanley (1963, 1966), the
RD design was presented as a pretest-posttest
two-group design. The term “pretest-posttest” implies
that the same measure (or perhaps alternate forms of the
same measure) is administered before and after some
program or treatment. (In fact, the RD design does not
require that the pre-and posttest measures be the same.)

Throughout this article, the term “pretest measure”
will be used to imply that the same measure is given
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twice, while the term “preprogram measure” will imply
more broadly that before-and-after measures may be the
same or different. It is assumed that a cutoff value on the
pretest or preprogram measure is being used to assign
persons or other units to the program. Two-group ver-
sions of the RD design might imply either that some
treatment or program is being contrasted with a no-pro-
gram condition or that two alternative programs are be-
ing compared. The description of the basic design as a
two-group design implies that a single pretest cutoff
score is used to assign participants to either the program
or comparison group. Here, the term “participants” will
refer to whichever unit is assigned. In many cases par-
ticipants are individuals, but they could be any definable
unit, such as hospital wards, hospitals, or counties. The
term “‘program” will be used throughout to refer to any
program, treatment, or manipulation for which effects
are being examined. In notational form, the basic RD
design might be depicted as

CO0XO

CcC O 0]

where the C indicates that groups are assigned by means
of a cutoff score, an O stands for the administration of
a measure to a group, an X depicts the implementation
of a program, and each group is described on a single
line (i.e., program group on top, control group on the
bottom).

An example will make this initial presentation more
concrete: for this purpose, a hypothetical study will be
described where the interest is in examining the effect of
anew treatment protocol for inpatients with a particular
diagnosis. For simplicity, it can be assumed that the new
protocol will be tried on patients who are considered
most ill. For each patient there is a continuous quantita-
tive indicator of severity of illness that is a composite
rating that can take values from 1 to 100, where high
scores indicate greater illness. Furthermore, a pretest
cutoff score of 50 was (more or less arbitrarily) chosen
as the assignment criterion, and all those scoring 50 or
higher on the pretest are to be given the new treatment
protocol, while those with scores lower than 50 are giv-
en the standard treatment.

It is useful to begin by considering what the data might
look like if the treatment protocol was not administered,
but instead all participants were measured at two points
intime. Figure 1 shows the hypothetical bivariate distri-
bution for this situation. Each dot on the figure indicates
a single person’s pretest and posttest scores. The dot
labeled “a” shows an individual who had a high pretest
and posttest score; this person was severely ill on the
first measure and remained so on the second. The dot
labeled “b” represents the pretest and posttest foran




Figure 1. Hypothetical no-program basic RD design

100 |

Severity
of illness
(post -
program)

1 50 100

Severity of illness
(preprogram)

individual who was not severely ill on both occasions.
The vertical line at the pretest score of 50 indicates the
cutoff point (although for Fig. 1 it is assumed that no
treatment protocol has been given). The solid line
through the bivariate distribution is the linear regression
line. The distribution depicts a strong positive relation-
ship between the pretest and posttest—in general, the
more severely ill a person is at one point in time, the
more ill that person will be at the other.

Figure 2 illustrates what the outcome might look like
if the new treatment protocol is administered and has a
positive effect. For simplicity, it will be assumed that
the treatment protocol had a constant effect that lowered
each treated person’s severity of illness by 10 points.
Figure 2 is identical to Figure 1 except that all points to
the right of the cutoff (i.e., the new treatment protocol
group) have been lowered by 10 points on the posttest.
The dashed line in Figure 2 shows what the treated
group’s regression line would be expected to look like
if the program had no effect (as was the case in Fig. 1).
On the basis of Figure 2, it can be seen how the RD
design got its name—a program effect is implied when a
“discontinuity” in the “regression” lines is observed at
the cutoff point.

Figure 2 portrays a very simplistic version of the de-
sign with an unrealistically uniform outcome. This
could be complicated by assuming that instead of a con-
stant effect, the program had no effect on persons scor-
ing at the cutoff and its greatest effect (again, 10 points)
on those most severely ill. This hypothetical pro-
gram-pretest interaction effect case is shown in Figure
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Figure 2. Hypothetical RD design with a constant
(additive) program effect
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3. Again, the dashed line shows the regression line that
would be expected if the treatment was not effective. As
in all RD designs, it is the discontinuity (in this case, the
change in slopes) in the regression lines at the cutoff
point that implies the treatment has an effect.

As in any research, there is a wide variety of possible
outcomes. Instead of being effective, a program might
actually harm the participants, as evidenced on outcome
measures. If such a negative effect occurs and is con-
stant across the pretest range, it displaces the treatment
group regression line in Figure 2 upward instead of
downward. A similar argument can be extended for the
case of a negative interaction effect.

Selection of the cutoff. The choice of cutoff value is
usually based on one of two factors. It can be made
solely on the basis of the program resources that are
available. For instance, if a program has the capability
of handling only 25 persons and 70 people apply, a cut-
off point can be chosen that distinguishes the 25 most
needy applicants from the rest. Alternatively, the cutoff
can be chosen on substantive ground. If the preprogram
assignment measure is an indication of severity of ill-
ness measured on a scale of 1 to 7 and physicians or other
experts believe that all patients scoring 5 or more are
critical and are a “good” fit with the criteria defined for
program participants, then a cutoff value of 5 may be
used.

Interpretation of results. In order to interpret the
results of an RD design, the nature of the assignment
variable must be known, as well as who received the
program and the nature of the outcome measure. With-




Figure 3. Hypothetical basic Rd design with a
program-pretest interaction effect
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out this information, there is no distinct outcome pattern
that directly indicates whether an effect is positive or
negative.

To illustrate this, it will be assumed that a hospital
administrator would like to improve the quality of pa-
tient care by implementing an intensive quality of care
training program for staff. Because of financial con-
straints, the program is too costly to implement for all
employees; instead, it will be administered to the staff of
specifically targeted units or wards that seem most in
need of improvements in quality of care. Two general
measures of quality of care are available. The first is an
aggregate rating of quality of care based on observation
and rating by an administrative staff member—labeled
here as the “QOC rating.” The second is the ratio of the
number of recorded patient complaints relative to the
number of patients in the unit over a fixed period of time,
termed here the “complaint ratio.” In this scenario, the
administrator could use either the QOC rating or the
complaint ratio as the basis for assigning units toreceive
the training. Similarly, the effects of the training could
be measured on either variable.

Figure 4 shows four outcomes of alternative RD imple-
mentations possible under this scenario; only the regres-
sion lines are shown. Itis worth noting that even though
all four outcomes have the same pattern of regression
lines, they do not imply the same result. In Figures 4a
arid 4b, hospital units were assigned to training because
they scored “below” some cutoff score on the QOC rat-
ing. In Figures 4c and 4d, units were given training
because they scored “above” the cutoff score on the
complaint ratio measure. In each instance, the dashed

line indicates the regression line that would be expected
for the training group if the training had no effect. This
dashed line represents the no-discontinuity projection
of the comparison group regression line into the region
of the program group pretest scores.

Clearly, even though the outcome regression lines are

" the same in all four groups, the four graphs would be

interpreted differently. Figure 4a depicts a positive ef-
fect because training raised the program group regres-
sion line on the QOC rating over what would have been
expected. However, Figure 4b shows a negative effect
because the program raised training group scores on the
complaint ratio, indicating increased complaintrates. In
Figure 4c, a positive effect is seen, because the regres-
sion line has been lowered on the complaint ratio rela-
tive to what could have been expected. Finally, Figure
4d shows a negative effect where the training resulted in
lower QOC ratings than would be expected otherwise.
The point here is a simple one. A discontinuity inregres-
sion lines indicates a program effect in the RD design,
but the discontinuity alone is not sufficient to determine
whether the effect is positive or negative. In order to
make this determination, it is necessary to know who
received the program and how to interpret the direction
of scale values on the outcome measures.

The role of the comparison group in RD designs.
The purpose of the foregoing discussion has been to
explain the benchmark for comparison in the RD design.
In experimental or other quasi-experimental designs,
researchers either assume or try toprovide evidence that
the program and comparison groups were equivalent
prior to the program so that postprogram differences can
be attributed to the manipulation. The RD design in-
volves no such assumption. Instead, with RD designs it
is assumed that—in the absence of the program-the
pre-post relationship would be equivalent for the two
groups. Thus, the strength of the RD design is depen-
dent on two major factors. The first is the assumption
that there is no spurious discontinuity in the pre-post
relationship that happens to coincide with the cutoff
point. The second factor concerns the degree to which
the pre-post relationship is known and correctly mod-
eled; this constitutes the major problem in the statistical
analysis of the RD design.

The RD design from a pattern matching perspec-
tive. Another way to understand how the RD design
works is to reformulate it in terms of a pattern matching
philosophy of research (Trochim, 1985). The general
pattern matching notion is that in all confirmatory, hy-
pothesis-testing research there is an ideal or theoretical
pattern and a real or obtained pattern. The theoretical
pattern describes the researcher’s expectation for the
results of the study; the obtained pattern consists of the



Figure 4. Interpretations of direction of effects for four hypothetical RD designs
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results as measured or observed. The theory gains sup-
port only if the theoretical and obtained patterns match,
and there are no alternative plausible theoretical pat-
terns that would match the obtained outcome as well.
The central principle of pattern matching is that the
more distinctive, unique, or idiosyncratic the theoretical
pattern, the more likely it is that a match will support the
theory, because in general it will be less likely that there
will be plausible alternative theoretical patterns to the
one being tested.

With this in mind, the strengths of the RD design can
be better understood, especially in comparison to other
quasi-experimental strategies. In the RD design the
theoretical pattern is the expectation of the discontinuity
in regression lines at the cutoff point. It is very unlikely
that a cutoff point would be chosen that just happened
to coincide with some naturally occurring discontinuity

in the pre-post relationship. In fact, typical pre-post
relationships seldom evidence such natural discontinui-
ties at all. Thus the selection of the cutoff usually consti-
tutes the creation of a relatively unique theoretical ex-
pectation that, if confirmed in the obtained pattern, will
allow few plausible counter explanations.

This can be contrasted with the typical pretest-posttest
nonequivalent group design. Here, groups are nonran-
domly assigned in the hope that they are equivalent on
preprogram characteristics. If there is any preprogram
characteristic on which the groups differ that is related
to outcome measures, a difference between groups on an
outcome measure may be attributed to this characteristic
rather than to the program. In most research settings,
there usually are an abundance of such preprogram
group differences that are plausible or at least possible.
In the RD design, it is seldom plausible that the groups
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would be expected to differ naturally in their pre-post
relationship at a point that coincides with the cutoff.
Thus it is the dichotomization of the bivariate distribu-
tion at the chosen cutoff point that determines the unique
theoretical pattern that provides the strength of the RD
design from a pattern matching perspective.

RD designs and internal validity. Over the past two
decades the theory of internal validity has been formu-
lated and articulated largely through the work of Donald
T. Campbell (Campbell and Stanley, 1963, 1966; Cook
and Campbell, 1979). More recently, Campbell (1986)
has relabeled the concept of internal validity as “local
molar causal validity.” Because of the tentativeness of
the relabeling, this discussion will use the more tradi-
tional term. “Internal validity” refers to whether or not
it can be inferred that the treatment or program being
investigated caused a change in outcome indicators.
Internal validity is not concerned with the ability to gen-
eralize; rather, it focuses on whether a causal relation-
ship can be demonstrated for the immediate research
context. Research designs that address causal questions
are often compared on their relative ability to yield inter-
nally valid results.

In most causal hypothesis tests, the central inferential
question is whether any observed outcome differences
between groups are attributable to the program or in-
stead to some other factor. In order to argue for the
internal validity of an inference, the analyst must at-
tempt to demonstrate that the program—and not some
plausible alternative explanation—is responsible for the
effect. In the literature on internal validity, these plausi-
ble alternative explanations or factors are often termed
“threats” to internal validity. A number of typical
threats to internal validity have been identified. For
instance, in a one-group pre-post study a gain from pre-
test to posttest may be attributable to the program or to
other plausible factors, such as historical events occur-
ring between pretest and posttest or natural maturation
over time.

Many threats can be ruled out with the inclusion of a
control group. Assuming that the control group is
equivalent to the program group prior to the study, the
control group pre-post gain will provide evidence for
the change that should be attributed to all factors other
than the program. A different rate of gain in the program
group provides evidence for the relative effect of the
program itself. Thus, randomized experimental designs
are considered strong in internal validity because of
confidence in the probabilistic preprogram equivalence
between groups that results from random assignment
and helps assure that the control group will provide a
legitimate reflection of all nonprogram factors that
might affect outcomes.

In designs that do not use random assignment, the cen-
tral internal validity concern is the possibility that
groups may not be equivalent prior to the program. The
term “selection bias” refers to the case where prepro-
gram differences between groups are responsible for
postprogram differences. Any nonprogram factor that

- is differentially present across groups can constitute a
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selection bias or a selection threat to internal validity.

Because of the deliberate preprogram differences be-
tween groups in RD designs, there are several selection
threats to internal validity that might appear to be a
problem. For instance, a selection-maturation threat
implies that different rates of maturation between
groups might explain outcome differences. For exam-
ple, a pre-post distribution with a linear relationship
having a slope equal to two units implies that, on the
average, a person with a given pretest score will have a
posttest score two times as high. Clearly there is matura-
tion in this situation—that is, subjects are achieving con-
sistently higher scores over time. For a subject with a
pretest score of 10 units, a posttest score of 20 would be
predicted for an absolute gain of 10. But, if the person
has a pretest score of 50, the prediction would be a post-
test score of 100, for an absolute gain of 50. Thus the
second person naturally gains or matures more in abso-
lute units (although the rate of gain relative to the pretest
score is constant). Along these lines, in the RD design
it is expected that all participants may mature, and in
absolute terms, this maturation may be different for the
two groups on average. Nevertheless, a program effect
in the RD design is not indicated by a difference between
the posttest averages of the groups, but rather by a
change in the pre-post relationship at the cutoff point.
In this example, although different absolute levels of
maturation are expected, a single “continuous” regres-
sion line with a slope equal to 2 would describe these
different maturational rates. In order for selection-mat-
uration to be a threat to internal validity in RD designs,
it must induce a discontinuity in the pre-post relation-
ship that happens to coincide with the cutoff point-an
unlikely scenario in most studies.

Another selection threat to internal validity that might
intuitively seem likely is the possibility of differential
regression to the mean or a selection-regression threat.
The phenomenon of regression to the mean arises when
there is an asymmetrical sampling of groups from a
distribution. On any subsequent measure the obtained
sample group mean will be closer to the population
mean for that measure (in standardized units) than the
sample mean from the original distribution is to its pop-
ulation mean.

In RD designs, asymmetric samples are deliberately
created, and consequently, regression toward the mean



is expected in both groups. In general, the low-scoring
pretest group is expected to evidence a relative gain on
the posttest, and the high-scoring pretest group is ex-
pected to show arelative loss. As with selection-matu-
ration, even though differential regression to the mean
is expected, it poses no problem for the internal validity
of the RD design. Itis not expected that regression to the
mean will result in a discontinuity in the bivariate rela-
tionship coincidental with the cutoff point. In fact, re-
gression to the mean is expected to be continuous across
the range of the pretest scores and to be described by the
regression line itself. [Draper and Smith (1981) point
out that the term “regression” was originally used by
Galton to refer to the fact that a regression line describes
regression to the mean.]

Although initially the RD design may seem susceptible
to selection biases, it is not. The above discussion dem-
onstrates that only factors that would naturally induce a
discontinuity in the pre-post relationship could be con-
sidered threats to the internal validity of inferences from
the RD design. In principle, the RD design is as strong
in internal validity as its randomized experimental alter-
natives. However, in practice the validity of the RD
design depends directly on how well the analyst can
model the true pre-post relationship, certainly a nontri-
vial statistical problem.

Relationship of RD designs to other designs. The
previous discussion implies how RD designs might be
viewed relative to their closest design alternatives. The
characteristic that differentiates pretest-posttest group
designs is the method of assignment of participants to
groups. Figure 5 shows the probability of being as-
signed to the program group, given the pretest score for
the three major types of pretest-posttest group designs.
Figure 5a shows that in the simple randomized experi-
ment or randomized clinical trial the probability of be-
ing assigned to the program group is .5 regardless of
pretest score, because participants are assigned random-
ly. Figure 5b shows that in an RD design where persons
below the cutoff are assigned to the program, the proba-
bility of assignment is a step function—those below the
cutoff have a probability of 1.0 and those above have a
zero probability of being assigned to the program.

Randomized experiments and RD designs are extreme
cases in terms of the conditional probability of assign-
ment to the program, given the pretest score. All non-
equivalent group designs fall on a continuum some-
where between these extremes. Figure 5S¢ shows
assignment functions for two hypothetical nonequiva-
lent group designs. Both functions show that there is
pretest nonequivalence between groups, with the pro-
gram group scoring lower on the pretest on average. In
one case, the groups are nearly equivalent with a slightly
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greater tendency for low pretest scores to be assigned to
the program group. This function more closely approxi-
mates the randomized experimental one and shows that
the groups are nearly equivalent. The other case shows
more marked nonequivalence on the pretest, more
closely approximating the RD function of Figure 5b.

The key is that for both randomized experiments and
RD designs the analyst knows exactly what the true
assignment function is because it is dictated by the na-
ture of the designs. With nonequivalent group designs,
this assignment function is never known perfectly and
must be estimated. Thus randomized experiments and
RD designs are strong against selection bias because the
rule for selection (assignment to groups) is known per-
fectly.

This discussion could be recast in terms of the advice
that methodologists might give to policymakers and ad-
ministrators on how to improve the accountability of
their programs. If the goal is to assess the effects of a

Figure 5. Comparison of pre-post design
assignment functions
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program (i.e., to examine a causal hypothesis), both ran-
domized experiments and RD designs are strong
choices. It makes sense intuitively that the accountabil-
ity of a program is largely dependent on the explicitness
of the assignment or allocation of the program to recipi-
ents. Lawmakers and administrators need to recognize
that programs are more easily evaluated and more ac-
countable when the allocation of the program is more
public and verifiable. The three designs described in
Figure 5 are analogous to the three types of program
allocation schemes that legislators or administrators
might choose.

Inrandomized experiments, the assignment processs is
analogous to a lottery, while RD designs can be consid-
ered explicit, accountable methods for assigning pro-
gramrecipients on the basis of need or merit. Nonequiv-
alent group designs might be considered a type of
political allocation because they enable the use of unver-
ifiable, subjective, or politically motivated assignment
(of course, most social programs are politically allo-
cated). Even when programs are allocated primarily on
the basis of need or merit, the regulatory agency usually
reserves some discretionary capability in deciding who
receives the program. Without debating the need for
this, it is clear that those who seek program accountabil-
ity should be encouraged to establish explicit criteria for
program eligibility, either through probability based lot-
teries or by relying on quantitative eligibility ratings and
cutoff values as in the RD design. To the extent that
legislators and administrators move toward more ex-
plicit assignment criteria, both the potential utility of the
RD design and the accountability of the programs will
be increased.

RD Design Variations

If the RD design were limited only to the basic form
described above, it would still have great utility as a
method for evaluation in health. But the design has
many variations that increase its versatility and utility.
This section describes many of these variations and il-
lustrates their application in hypothetical evaluation
problems from health-related areas.

Assignment variations. While the use of a prepro-
gram cutoff value is the distinguishing feature of the RD
design, it often proves to be difficult to implement.
When using the RD design in compensatory education,
school districts routinely set up formal procedures for
violating the assignment by cutoff rule. More often than
not, such procedures are couched in terms that empha-
size the educational and political advantages and mini-
mize the methodological difficulties that are introduced.
For instance, several school districts have used a “chal-
lenge program” that allowed teachers, parents, or ad-

ministrators to appeal the decision based on the cutoff
score, usually on educational grounds. A teacher could
“challenge” a student into the program because in the
teacher’s professional judgment the student needed the
program, even though the student may have scored

. above the cutoff value on the preprogram achievement
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test. Similarly, students could be challenged out of the
program even though they scored below the cutoff if
teachers or parents felt that the test score was inaccurate-
ly low or that participation in the program might be
stigmatizing or otherwise deleterious.

There is good reason to believe that comparable pres-
sures to make exceptions to cutoff-based assignment
would arise in health contexts. For instance, is it realis-
tic to envision the automatic assignment of patients to a
treatment program if the judgment of the attending phy-
sician contradicts the assignment by cutoff? Similarly,
is it possible that political favoritism, scheduling fac-
tors, and other anomalies won’t affect the assignment of
hospital staff members to in-service quality-control
training sessions regardless of their status relative to the
cutoff? Except in the unlikely case where exceptions to
the cutoff rule are random, misassignment constitutes a
major potential bias in RD designs because it will usual-
ly introduce discontinuities in the pre-post relationship
at the cutoff or complicate the form of the pre-post distri-
bution. Trochim (1984) used statistical simulations to
show that under reasonable assumptions about chal-
lenges in compensatory education, the resulting bias
could be significant. -

The major reason for exceptions to the cutoff rule is
thatitis perceived as too restrictive or inflexible. At first
glance, it appears that the cutoff criterion does not allow
room for professional judgment or discretion. In fact,
the RD design doesn’t preclude such judgment—it only
requires that judgments be quantified or explicitly ac-
counted for in the selection of the cutoff. To explain this,
two major strategies for including more discretion in
assignment are discussed: the use of multiple cutoff
points and the use of multiple preprogram assignment
variables.

Multiple cutoff points. RD designs are not limited to
the use of a single cutoff value. It is assumed that the
pre-post relationship in the absence of the treatment can
be described with a single continuous regression line
that extends over the entire range of the preprogram
scores. Even when multiple cutoff points are used, the
comparison group’s pre-post relationship would still be
used as the benchmark for projecting where other
groups’ regression lines should be.

The simplest case would involve the use of two cutoff
scores. Persons scoring above the higher cutoff would
be assigned to one group, those scoring below the lower




cutoff would be assigned to the other, and those scoring
between the cutoffs (or within the cutoff interval) could
be assigned by a variety of methods. To illustrate this,
consider a hypothetical case where the attending psychi-
atrist is to assign patients with a specific diagnosis to
receive either anovel intensive treatment protocol or the
traditional therapy for the type of disorder. The prepro-
gram assignment measure is a 1-7 severity rating for the
psychosocial stressors as described in the Diagnostic
and Statistical Manual of Mental Disorders (American
Psychiatric Association, 1980). This will be rated by the
psychiatrist and key nursing staff members, and the av-
erage for each person will be used for assignment. The
descriptive terms for scale values on the “severity of
psychosocial stressor” measure indicate that values
from 1 to 3 imply from “none” to “mild” stress, a 4
implies “moderate” stress, and a 5 or greater indicates
“severe” stress or worse. The assumption is that high
scorers are under more severe psychosocial stress and
are more in need of the intensive treatment.

Nevertheless, it is reasonable to expect that the psychi-
atrist may not have absolute faith in the validity of this
single quantitative scale. The original plan was to assign
all patients scoring 5 or higher on this averaged rating to
the new program and those scoring lower than 5 to the
traditional treatment. But the psychiatrist is concerned
that some of those who score just below 5 may be under
more stress than the measure indicates, and further, be-
lieves that professional judgment can be used to distin-
guish cases in need. The revised plan utilizes two cutoff
values. Allthose who score 5 or greater are automatical-
ly assigned to the new program, those scoring less than
4 are automatically assigned to standard treatment, and
those who score in the cutoff interval are assigned en-
tirely on the basis of the professional judgment of the
psychiatrist. This multiple-cutoff RD design is shown
in Figure 6. In the figure, it is assumed that the outcome
indicator is some measure of performance, with higher
scores indicating relative improvement. Here it can be
seen that the program had a positive effect on the out-
come.

Several points are noteworthy in this hypothetical
case. A basic requirement of the RD design is enough
information for the analyst to model the comparison
group pre-post relationship. If the preprogram assign-
ment measure had been rated by only one person (e.g.,
the psychiatrist alone), the resuiting value would be an
integer between 1 and 7; for the comparison group, pre-
progranrscores would take only the integer values 1, 2,
or 3. Only these three values would be available for
modeling the comparison group regression line-a mar-
ginally sufficient degree of variability if the true rela-
tionship is linear and an insufficient degree if curvili-
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nearity is present. By averaging the ratings of a number
of individuals, greater discrimination is introduced into
the measure, thus increasing the ability to estimate the
true pre-post relationship.

In the example, subjects within the cutoff interval are
assigned solely on discretionary grounds. Consequent-
ly, multiple analyses of the data are warranted, begin-
ning with an estimation of the program effect excluding
all cases that fall within the interval as shown in Figure
6. Subsequently, it would be reasonable to include all
cases to see if the original estimate is different. Greater
credibility would be accorded to the former analysis
than to the latter because of the greater potential for
selection biases in the discretionary cases.

The use of multiple cutoff points can enhance the inter-
nal validity of a study if random assignment is used on
cases that fall within the cutoff interval. This might arise
in practice if the original design required random as-
signment of all participants, but such assignment was
deemed unethical because it would deny the most needy
a potentially beneficial treatment. Here, the RD design
is “coupled” with a randomized experiment that is lim-
ited to a restricted range of the pretest falling within the
cutoff interval as first suggested by Boruch (1975). One
advantage of this approach (outside of the obvious ethi-
cal issue) is that the statistical power of the resulting
analysis, which would use only the cases within the
interval, would be treated as a traditional randomized
experiment; one would use only the scores outside the
interval and be treated as a basic RD design; and one
would use all scores resulting in an analysis with greater
statistical power than the other two.

Figure 6. Example of an RD design with multiple
cutoffs
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The use of multiple cutoff points also could be useful
ininstitutional settings where a serial implementation of
the program could be done, beginning with those most
inneed and progressing to those who are less needy. For
example, a consortium of hospitals might seek to reduce
the incidence of lower back injuries among their nursing
staff by providing training workshops for hospital units
where tasks are performed that are likely to cause such
injury. The training sessions cannot be provided to all
units at one time, but eventually all units should be
trained. The hospitals collect data on the incidence rates
of lower back injuries at regular intervals. A strategy for
accomplishing this within an RD framework is illus-
trated in Figure 7.

The figure shows three waves of implementation: in
the first wave (a), all units scoring above the cutoff are
assigned to training workshops; in the second wave (b),
a second and lower cutoff is used; in the third wave (c),
another, even lower cutoff is chosen. It is important to
note that for all three waves the original preprogram
measure at time 1 is used for assignment. The posttest
is lower back injury rates, and these are measured on all
units after each wave of implementation. In designnota-
tion this can be depicted as follows:

C 0X; 0 0] 0
cC O 00X O 0]
cC O 0] 0X3 O
c o 0 0] 0

where the subscripts of X indicate the wave of training
workshop implemented. Again, multiple analyses are
called for, with the control group incorporating a smaller
pretest range on each successive analysis. A strategy of
this type may be used whenever an institution has a
regularly instituted program, and it is feasible to collect
data on all participants at each wave of the study. The
design meets the institutional desire to treat the most
needy first and has the methodological advantages of
providing replication of the program evaluation and en-
abling easy coupling in situations where data are rou-
tinely collected by the institution at regular intervals.

Multiple assignment measures. In the basic RD design
the requirement of strict adherence to the cutoff criterion
may be unreasonable because it relies on a single quanti-
tative indicator that may not capture well the degree of
preprogram need. Here, two strategies for incorporating
multiple preprogram measures are discussed: the use of
separate measures, each having its own cutoff value, and
the use of an aggregate index variable that is a composite
of several measures.

Figure 7. RD designs with sequential programs
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Incidence
rate (posttest 3)

Lower back injury incidence rate

(by hospital unit)

The example used to illustrate these will concern the
diagnostic difficulties that face the clinician who must
decide the severity of illness as the basis for treatment
assignment. In this example, the physician will use the
criteria for a major depressive episode with melancholia
as described in the Diagnostic and Statistical Manual of
Mental Disorders (American Psychiatric Association,
1980).



Six major variables are used to make such a diagnosis
and presumably to judge its severity. Three of these are
exclusionary criteria (e.g., no evidence of schizophre-
nia) that would be used to exclude cases from the study
on grounds that they do not fall within the diagnosis.
The remaining three variables are ratings of symptoms
(e.g., dysphoric mood, symptoms of depression, and
melancholia symptoms) that must be present for varying
periods of time; these are the measures that would be
used to make the diagnosis and as the basis for assign-
ment to treatment for the disorder.

For example, consider the case where these three mea-
sures would be used separately, with each having its own
cutoff value. In this example, it is assumed that a patient
will be assigned to the treatment if that patient receives
a score greater than 4 on dysphoric mood, has at least
four of the eight depressed symptoms, and at least three
of the six melancholia symptoms. If any of these criteria
are not met, the patient will be in the control group.
Here, all three measures also will be used as posttests.
Thus there are nine (i.e., three pre X three post) bivariate
distributions in this case. None of the bivariate distribu-
tions is likely to adhere strictly to the cutoff criterion
because there are likely to be some cases that meet one
or two of the cutoff rules but not all three. Nevertheless,
the multivariate conditions are satisfied because all
three cutoffs must be met for a patient to be placed in the
treatment.

This approach would not work if the cutoff criteria
were joined by “or” instead of “and.” If the assignment
rule was that the patient had to meet any two of the three
cutoff rules, then a selection bias would be likely.

However, an “or” rule can be used when there is a
relatively large set of assignment variables. This can be
illustrated with an example involving ten or more vari-
ables for assignment—each with its own cutoff-some of
which are more objective symptomatically related rat-
ings or measures (e.g., blood pressure, severity of il-
Iness), while others are more subjectively based ratings
(by physicians or nursing staff) of need for treatment.
Further, the cutoff criterion is that the cutoffs must be
met on six or more of any of the measures for a patient
to be assigned to the program. Here the assignment
measure is actually a count of the number of individual
assignment criteria that the person meets. With 10 as-
signment measures a person could obtain a score be-
tween 0 (exceeds cutoff on no measure) and 10 (exceeds
cutoff on all ten measures). Thus the real assignment
measure in this example is based on an “or” condition
that takes into account a large set of individual mea-
sures. A relatively large set of assignment measures is
necessary in this design to have sufficient preprogram
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variability for estimating a comparison group regres-
sion line. This variation would not work if there were
three assignment measures (any two of which must be
met) because the comparison group preprogram values
would consist of the two integers 0 (no criteria met) and
1 (only one criterion met). Nevertheless, in situations
where many assignment measures are available, thisRD
variation may be particularly useful.

Neither of these multiple-measure versions of the RD
design has ever been suggested prior to this writing (as
far as this author knows). Both versions have obvious
value, in that they allow for the use of multiple quantita-
tive assignment variables, each with its own cutoff. If
physicians or hospital administrators are reluctant to
rely on a single quantitative assignment measure or if
they wish to take the professional judgment of the physi-
cian or staff into account, any number of additional rat-
ings can be included explicitly within the design.

Another variation of the RD design that utilizes multi-
ple preprogram assignment variables occurs when the
individual variables are combined into a single index
variable on which a cutoff is selected that constitutes the
sole basis for assignment to group. The major difficulty
with this procedure concerns how the variables should
be combined. In the simplest case, the variables can be
added or averaged. However, this would not be appro-
priate if the variables are on different scales or have
different means and standard deviations.

Standardizing each variable before aggregation will
almost always be desirable. In most cases, it also will be
desirable to weight certain variables as more important
than others. In the example given above, it may not be
desirable just to add or average the three standardized
variables of dysphoric mood, depressed symptoms, and
melancholia symptoms. Instead, the first two indicators
could be weighted more heavily than the third. Weights
could be based on theory or on prior empirical investiga-
tion of the variables. For an aggregate index it may be
more difficult to arrive at a theoretically sensible cutoff
value because the meaning of a number on the index is
related to need in a more complex fashion and may be
difficult to interpret.

It is possible that these approaches to the use of multi-
ple preprogram assignment variables can be combined.
Some subsets of variables could be pooled into aggre-
gate indexes, while others would be left as they are.
Each variable or index of variables could have its own
cutoff value. These multiple indicators could be com-
bined with either an “and” or an “or” rule as described
above. However it is accomplished, the use of multiple
preprogram assignment variables enables the researcher
to develop more sensitive and accurate assignment rules




and should help to reduce resistance to the adherence to
the cutoff criterion in RD designs.

Program variations. The basic RD design assumes
that the comparison group is actually a no-program con-
trol. This gives the appearance of an “absolute” con-
trast, that is, the program versus nothing at all. Essen-
tially, the research question is whether or not the
program makes a difference when compared to doing
nothing. In many health contexts, this type of absolute
question may be impractical, unethical, or meaningless.
For instance, there probably would be more interest in
examining whether the treatment has an effect relative
to the current standard treatment for the disorder. Or,
there may be several potentially useful and novel treat-
ments that should be tested. In other situations, the
interactions of different treatment protocols could be
examined. All of these variations are possible with RD
designs, but considerable thought must be given to how
they will be incorporated.

Clearly, any two treatments (whether ‘an absolute or
relative comparison) may be incorporated within the
basic RD design structure. However, one of the major
advantages of the RD design is that persons who are in
greater need may be assigned to progressively riskier
treatments. For example, if there are three treatment
programs of interest—the standard, well-accepted treat-
ment and two experimental and riskier protocols—and
there is reason to believe that the first experimental
treatment is riskier than the other, it may be desirable to
have two cutoff points. In this scenario, the neediest
patients would be assigned to the most risky program,
the least needy patients would be assigned to the least
risky treatment (i.e., standard treatment), and those who
fall between the two cutoff points would be assigned to
the moderately risky program. On the other hand, if
there is no a priori basis for judging one experimental
program riskier than the other, a single cutoff may be
used to assign those who are least in need to standard
treatment; those on the other side of the cutoff would be
randomly assigned to one of the two experimental pro-
tocols. Even more complex assignment patterns can be
envisioned, with multiple cutoffs and perhaps multiple
groups within certain cutoff intervals; but these become
less feasible as either within-group sample size or com-
parison group preprogram variability decreases. Never-
theless, it is worth recognizing that RD designs allow
considerable flexibility in examining alternative pro-
gram variations.

Postprogram measurement variations. The forego-
ing has shown that the basic RD design, which utilizes
a single postprogram measure identical to the pretest,
can be extended through variations of the assignment
strategy and the program comparisons that are made. In

130

this section, the measurement of postprogram variables
will be considered, including the use of (1) posttests that
differ from the assignment measure, (2) multiple post-
tests and subtests, and (3) posttests that are not continu-
ous normal variables.

Several of the examples provided earlier implied that
pre- and postprogram measures don’t have to be the
same or equivalent in RD designs. Initially, this may
seem counter-intuitive, because usually in most pre-post
designs it is important to include the same measure at
both points in time or, less desirably, to use a proxy
preprogram measure that purportedly taps the same con-
struct. This is in part because often there is interest in
pre-post gains and in part because a pretest may be the
best covariate that can be included. In RD designs it is
not necessary to use the same pre- and postprogram
measures; at times, it may even be undesirable. For
instance, subjects could be assigned to a health educa-
tion program on the basis of economic need (e.g., in-
come), but the results of that program could be ex-
amined on the basis of indicators of knowledge and
attitudes toward health. Here, the assignment variable
is the economic indicator, and the postprogram mea-
sures reflect the substantive interests of the program.

The following example illustrates why RD designs
don’t require pre-post isomorphism and explains the
relationship between RD designs and randomized ex-
periments. In this hypothetical case, subjects are as-
signed to a health education program on the basis of the
last two digits of their Social Security numbers—if the
value is greater than 50, they receive the program, other-
wise they do not. The assumption here is that the assign-
ment measure is statistically unrelated to knowledge—
that is, the correlation is zero. The outcome measure is
an objective test of their knowledge of health issues as
taught in the program. If the program increases knowl-
edge scores, regression analysis results like those shown
in Figure 8 might be expected.

In the figure, the relationship between measures is as-
sumed to be zero; therefore, the regression lines have
zero slopes. As always, the program effect is indicated
by a discontinuity in regression lines at the cutoff. But
in this case, because the regression lines are flat, this
amounts to a test of the difference between group means
on the postprogram knowledge measure. Here, the as-
signment measure is random with respect to the posttest
and thus, by using uncorrelated pre-post measures, a
type of random assignment has been achieved. Of
course, such unrelated measures typically would not be
used, because the need for a program is usually defined
in terms of characteristics that might be affected by the
program. However, there is nothing in the RD design



Figure 8. RD designs with uncorrelated pre- and
postprogram measures

Health
education
Health program
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Lasttwo digits of
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that requires identical or equivalent pre-post measure-
ment.

This article has implied that the effects of a program
can be examined on any number of outcome variables;
two brief comments are in order. First, for each postpro-
gram measure there is, in effect, a separate RD design.
Each would be handled in a separate statistical analysis,
and it cannot be assumed that a model that fits one post-
program measure will automatically be appropriate for
another. Second, often it will be useful to analyze the
total aggregate score for a given measure and then break
the test into appropriately defined subtests for separate
additional analyses. For example, if a particular health
knowledge test provides a total score indicating the
overall level of knowledge and that same test also can be
divided into subtests that describe knowledge in sepa-
rate areas (e.g., nutrition, diagnosis, and first aid), sepa-
rate analyses could be conducted for both the total score
and each subtest. In this way, the judicious selection of
measures is likely to increase the probative value of an
RD design and enhance the researcher’s ability to sug-
gest more specific program revisions.

In some contexts, postprogram measures will not be
continuous normal variables. This complicates the
modeling task, but does not necessarily preclude the use
of RD designs. An excellent example is given by Berk
and Rauma (1983), who used an RD design to evaluate
the effects of a California law that extended unemploy-
ment benefits to released prisoners who previously had
not been eligible. To qualify, prisoners had to earn at
least $1,500 working in the prison during the final
twelve months prior to their release. The State legisla-
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ture was interested in whether extending such benefits
would ultimately reduce recidivism in the form of pa-
role revocation that usually resulted in a return to prison.
Thus the key outcome measure was a dichotomous one
where a score of 1 indicated recidivism and a 0 indicated
none. Traditional regression analysis was clearly inap-
propriate, and visual inspection of the data for disconti-
nuities at the cutoff would have been difficult. Berk and
Rauma (1983) relied instead on a linear random utility
model related to the binary logit model. These investi-
gators concluded that ex-offenders who were in the pro-
gram were about 10 percent less likely to return to pris-
on. This example is instructive for health evaluation
contexts. Dichotomous postprogram measures might
be used to indicate mortality, recidivism, absence or
presence of symptoms, and so on. While the use of
postprogram measures that are not continuous normal
variables is feasible in RD designs, the analyst must be
cautious in constructing a statistical model to appropri-
ately account for distributional form.

Statistical Analysis of the RD Design

The ability of an RD design to yield unbiased estimates
of program effects depends on the degree to which the
design has been implemented correctly and how well the
true relationship between the assignment variable(s)
and postprogram measure(s) has been modeled. A de-
tailed description of implementation issues can be found
in Trochim (1984). Discussions of analytic models are
in Trochim (1984) and Judd and Kenny (1981). This
section provides an overview of the assumptions behind
a general analytic model, with some consideration of
how this model might be altered for several of the design
variations discussed earlier. _

Assumptions of an RD analysis. Before a discussion
of the specific analytic model is presented, it is impor-
tant to understand the assumptions that must be met.
The basic RD design as described earlier is assumed;
variations in the design will be discussed later. There are
five central assumptions that must be made in order for
the analytic model presented here to be appropriate:

1. The cutoff criterion. The cutoff criterion must be
followed without exception. When there is misas-
signment relative to the cutoff value (unless it is
known to be random), a selection threat arises, and
estimates of the program effect are likely to be
biased. Misassignment relative to the cutoff, often
termed a “fuzzy” RD design, introduces analytic
complexities that are discussed in Trochim (1984)
and Trochim and Spiegelman (1980).

2. The pre-post distribution. It is assumed that the
pre-post distribution can be described as a polyno-
mial function. If the true pre-post relationship is
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logarithmic, exponential, or some other function,
the model given below is misspecified and esti-
mates of the program effect are likely to be biased.
Of course, if the data can be transformed to create
a polynomial distribution prior to analysis, the mod-
el may be appropriate, although it is likely to be
more problematic to interpret. Sometimes, even if
the true relationship is not polynomial, a sufficient-
ly high-order polynomial will adequately account
for whatever function exists. However, the analyst
is not likely to know whether or not this is the case.

Comparison group pretest variance. There must be
a sufficient number of pretest values in the compari-
son group to enable adequate estimation of the true
relationship (i.e., pre-post regression line) for the
group. It is usually desirable to have variability in
the program group as well, although this is not
strictly required because the comparison group line
can be projected to a single point for the program
group as discussed in Trochim (1984).

Continuous pretest distribution. Both groups must
come from a single continuous pretest distribution,
with the division between groups determined by the
cutoff. In some cases it might be possible to find
intact groups (e.g., two groups of patients from two
different geographic locations) that serendipitously
divide on some measure so as to imply some cutoff.
However, such naturally discontinuous groups must
be used with caution; because they differed natural-
ly at the cutoff prior to the program, there is a greater
likelihood that such a difference could reflect a se-
lection bias that could introduce natural pre-post
discontinuities at that point.

Program implementation. 1t is assumed that the
program is uniformly delivered to all recipients
(i.e., they all receive the same dosage, length of stay,
amount of training, or whatever). If this is not the
case, it is necessary to model explicitly the program
as implemented, thus complicating the analysis
somewhat. '

A model for the basic RD design. The model pres-
ented here for the basic RD design is discussed in Tro-
chim (1984) and is similar to the approach recom-
mended in Judd and Kenny (1981). Given a pretest
assignment measure, X;, and a postprogram measure, y;,
the model can be stated as follows:

Y, = b0\+"ble+ byz; +b3x7z7+ . . .+b,, X7 °%

+ €
where
~ . . e . .
X;j = preprogram measure for individual i minus the

value of the cutoff, x, (i.e., X ;= X; - Xo)
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yi = postprogram measure for individual i

z; = assignment variable (1 if program participant;
0 if comparison participant)

s = thedegree of the polynomial for the associated
x T

b, = parameter for comparison group intercept at
cutoff

b; = linear slope parameter

b, = program effect estimate

b, = parameter for the s® polynomial or interaction
terms if paired with z

e; = random error

The major hypothesis of interest is:
Hp:b2=0

tested against the alternative:
Hy:b,#0

There are several points to note about this model. First,
the model estimates both main and interaction effects at
the cutoff point—that is, the model looks for discontinui-
ties in the pre-post polynomial relationship at the cutoff
point. Second, the model requires that the analyst sub-
tract the cutoff score value from each pretest score. The
term x T has a superscript tilde to indicate this transfor-
mation of the pretest x;. Finally, the model allows for
any order of polynomial function (although certain re-
strictions are made in specifying the function, as de-
scribed below). Thus, in theory, the true pre-post rela-
tionship can be linear, quadratic, cubic, quartic, and so
on, or any combination of these.

Model specification. Given that the assumptions de-
scribed above are correct and the general model is ap-
propriate, the key problem in the analysis of an RD
design is the correct specification of the polynomial
model for the data at hand. Unfortunately, there is no
simple or mechanical way to determine definitively the
appropriate model for the data. Consequently, as with
any statistical modeling, the RD analysis requires con-
siderable judgment and discretion, since for any single
RD design, the analyst will have to conduct multiple
analyses based on different assumptions about the na-
ture of the true pre-post relationship. The procedures
outlined here explicitly encourage a multiple analysis
approach.

Steps in the analysis. The following steps are neces-
sary in specifying the model for an RD analysis. From
a basic RD design, the analyst has a pretest assignment
value (x; in the model) for each person or unit. With this



pretest score and the cutoff value, it is possible to create
a new variable, z;, which is equal to 1 for each subject
who is in the program or 0 for those not in the program.
This is accomplished on the computer with a simple
transformation statement that recodes the pretest as a
dummy-coded group membership variable in terms of
the cutoff value. Finally, for each person there is a post-
test score (labeled y; in the model). Thus to begin the
analysis there are three variables: x;, z;, and y;. Given
these variables, the steps used are as follows.
Transformthe pretest. The analysis begins by subtract-
ing the cutoff value from each pretest score, thus creat-
ing the term x }as in the model. This is done in order to
set the intercept equal to the cutoff so that estimates of
effect are made at the cutoff value (rather than at x; = 0).
Examine the relationship visually. There are two major
things to look for in a graph of the pre-post relationship.
First it is important to determine whether there is any
visually discernible discontinuity in the relationship at
the cutoff. The discontinuity could be a change in level
vertically (main effect), a change in slope (interaction
effect), or both. If it is clear that there is a discontinuity
at the cutoff, then analytic results that indicate no pro-
gram effect should not be accepted as reliable. Howev-
er, if nodiscontinuity is apparent, it may be that variabil-
ity in the data is masking an effect, and the analytic
results must be carefully examined. Secondly, the ana-
lyst should consider the degree of polynomial that may
be required as indicated by the bivariate slope of the
distribution, particularly in the comparison group. A
good approach is to count the number of flexion points
(i.e., number of times the distribution “flexes” or
“bends”) that are apparent in the distribution. If the
distribution appears linear, there are no flexion points.
A single flexion point could be indicative of a second-
(quadratic) order polynomial. This information will be
used to determine the initial model that will be specified.
Create higher-order terms and interactions. Depend-
ing on the number of flexion points detected, transfor-
mations of the transformed assignment variable, x7; are
created. The rule of thumb here is to go two orders of
polynomial higher than was indicated by the number of
flexion points. Thus if the bivariate relationship ap-
peared linear (i.e., there were no flexion points), trans-
formations up to a second-order (0 + 2) polynomial
should be created. Since the first-order polynomial al-
ready exists in the model (x7), only the second-order
polynomial would have to be created by squaring x7'to
obtain x72.: For each transformation of x 7, the interac-
tion term also is created by multiplying the polynomial
by z;. In this example there would be two interaction
terms: x'}/zi and x%¥2z. Each transformation can be
accomplished easily through straightforward multipli-
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cation on the computer. If there appeared to be two
flexion points in the bivariate distribution, transforma-
tions up to the fourth (2 + 2) power and their interactions
would be created. Visual inspection need not be the only
basis for the initial determination of the degree of poly-
nomial needed. Certainly, prior experience modeling
similar data should be taken into account. The rule of
thumb given here implies that the analyst should err on
the side of overestimating the true polynomial function
needed (for reasons outlined in Trochim, 1984). Based
on the power initially estimated from visual inspection,
all transformations and their interactions up to that pow-
er should be constructed. Thus, if the fourth power is
chosen, all four terms x5 to X4 and their interactions
should be constructed.

Estimate the initial model. At this point, the analysis
can begin. Any acceptable multiple regression program
can be used to accomplish this on the computer. The
analyst simply regresses the posttest scores, y;, onx 7, z;,
and all higher-order transformations and interactions
created in Step 3. The regression coefficient associated
with the z; term (i.e., the group membership variable) is
the estimate of the main effect of the program. If there
is vertical discontinuity at the cutoff, it will be estimated
by this coefficient. The significance of the coefficient
(or any other) can be tested by constructing a standard
t-test using the standard error of the coefficient that is
invariably supplied in the computer program output. If
the polynomial function required to model the distribu-
tion was correctly overestimated at Step 3, then the esti-
mate of the program effect will at least be unbiased.
However, by including terms that may not be needed in
the true model, the estimate is likely to be inefficient-
that is, standard error terms will be inflated; hence the
significance of the program effect may be underesti-
mated. Nevertheless, if the coefficient is highly signifi-
cant at this point in the analysis, it would be reasonable
to conclude that there is a program effect. The direction
of the effect is interpreted based on the sign of the coeffi-
cient and the direction of scale of the posttest. Interac-
tion effects also can be examined (e.g., a linear interac-
tion would be implied by a significant regression
coefficient for the x¥z; term).

Refine the model. The procedure described thus far is
conservative with regard to bias. Itis designed toreduce
the chances of a biased program effect estimate even at
the risk of increasing the error of the estimate. A full
justification for this, which is outside the scope of this
article, is provided in Trochim (1984). In brief, both an
unbiased and efficient estimate is obtained if the specific
model includes only the polynomial and interaction
terms of the true relationship. Obviously, the analyst is
never likely to know this true relationship with certainty.




If any term in the true relationship is omitted from the
analysis (regardless of any other terms that are in-
cluded), the model is considered underspecified and a
biased estimate of program effect is likely. On the other
hand, if all of the necessary terms from the true model
are included in the analysis along with other unneeded
ones, the model is considered overspecified. In theory,
the unnecessary terms would be expected to have non-
significant coefficients. In this case, the estimate of the
program effect is unbiased, but the analyst “pays for” the
inclusion of unnecessary terms with lower efficiency of
the estimate. In general, the results of the initial model
are likely to be overspecified and, while unbiased, may
be inefficient.

On the basis of the results of Step 4, an attempt may be
made to remove apparently unnecessary terms and rees-
timate the treatment effect with greater efficiency. This
is a tricky procedure and should be approached cau-
tiously to minimize the possibility of bias. To accom-
plish this, the output of the regression analysis in Step 4
should be examined, and the analyst should note the
degree to which the overall model fits the data, the pres-
ence of any insignificant coefficients, and the pattern of
residuals. A conservative method for deciding how to
refine the model is to begin by examining the highest-or-
der term in the model and its interaction. If both coeffi-
cients are nonsignificant, and the goodness-of-fit mea-
sures and pattern of residuals indicate a good fit, the
analyst might drop these two terms and reestimate the
resulting model. Thus, if a fourth-order polynomial was
estimated and the coefficients for x 74 and x%44z; were
found to be nonsignificant, these terms could be
dropped and the third-order model respecified. This
procedure would be repeated until (a) either of the coef-
ficients is significant, (b) the goodness-of-fit measure
drops appreciably, or (c) the pattern of residuals indi-
cates a poorly fitting model. The final model still may
include unnecessary terms, but there are likely to be
fewer of these and, consequently, efficiency should be
greater. Model specification procedures that involve
dropping any term at any stage of the analysis are more
dangerous and more likely to yield biased estimates be-
cause of the considerable multicolinearity that will exist
between the terms in the model.

Present the results. Because of the difficulties asso-
ciated with model specifications in the RD design, usu-
ally it will be necessary to conduct multiple analyses of
the same data under different model assumptions.
While such a multiple analysis approach is becoming
more of a standard among social science researchers
(Reichardt and Gollob, 1986), it clearly runs counter to
the typical administrator’s desire to obtain the answer
for a question. Apparently, there is no simple way out
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of such a dilemma. The analyst may choose to list the
different estimates of the program effect by model, indi-
cate the range of the estimates by reporting the highest
and lowest values, or highlight a single estimate as a
“best” or “favorite” one while also reporting the others.

An illustrative analysis. To illustrate the steps in an
RD analysis, data are presented from an evaluation of a
compensatory education reading program. The pro-
gram was conducted during the 1978-79 school year in
the Providence, Rhode Island school district and was
administered through the federally funded Title I of the
Elementary and Secondary Education Act of 1965. The
analysis presented here includes all second-grade stu-
dents who were pre- and posttested and enrolled at an
eligible school. The Comprehensive Test of Basic Skills
(CTBS) was administered as the pretest in March 1987
and as the posttest in March 1979. This analysis and
other examples are discussed in Trochim (1984), along
with detailed consideration of some of the complexities
of the Title I compensatory education evaluation con-
text. As in the preceding discussion, the analysis com-
prised the steps described below.

Transform the pretest. For this program, the cutoff
value was a CTBS pretest score of 179. Therefore, the
first step in the analysis involved subtracting this value
from each pretest value, x7. The cutoff value divides
this second-grade sample into two groups: the low-scor-
ing program group, consisting of 54 cases, and the
high-scoring comparison group, which had 411 stu-
dents.

Examine the relationship visually. The bivariate distri-
bution is shown in Figure 9. One of the first things that
will be noticed is a fair amount of noise or variability in
the data and some visual suggestion of outliers or
“stray” points. Despite this, it should be visually appar-
ent that there is a jump or discontinuity at the cutoff
value. To see this, imagine some regression line that fits
the comparison group cases. Now, extend that line to the
left into the area of the program group. It should be seen
that most of the program group cases have higher post-
test values than that line would predict (i.e., fall above
test values than that line would predict (i.e., fall above
the line). On the basis of this rough visual assessment,
the analysis would be expected to provide evidence for
aprogram effect. Because of the direction of the discon-
tinuity, it also would be expected that the program had
a positive effect on the participants by increasing their
posttest scores relative to what could be expected.

The second factor involves the degree of polynomial
that might be appropriate for the model. Using the “flex-
ion point” rule of thumb described earlier, it might be
argued that there is a single flex point in the comparison




Figure 9. Example analysis: Bivariate distribution - Providence second grade reading
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group distribution in the vicinity of a pretest score of 250
or so, suggesting that a quadratic term might be needed.
There is little evidence for any higher-order model. Itis
worth noting that the program group has a relatively
restricted pretest range that makes it difficult to assess
visually what the slope of the program group line might
be. In this case, there is some suggestion that the linear
slopes of the two groups are different (a linear interac-
tion). This will be examined in the statistical analysis.

Create higher-order terms and interactions. Follow-
ing from the rule of thumb described earlier, this evalua-
tion will begin with an analysis that goes two orders of
polynomial higher than indicated by the number of flex-
ion points. Since there was possibly one flex point, this
means it will begin with an analysis that includes up to
third-order (i.e., cubic) terms and their interactions.
Specifically, the first model to be specified is as follows:

Y; = b, +b;x7 + byz; + bsx{ z;+ b4x-,~2 +bsx72z +

bﬁx; + b7xi~ 3Zi + €

Estimate the initial model. The parameter estimates
for the initial model are shown in Table 1. The only term
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in this model that is significant is by, the constant. The
program effect is estimated to be 21.69 CTBS points,
with a standard error of 17.25. Thus the program effect
is in the positive direction (as expected from examina-
tion of the bivariate distribution) but is not statistically
significant. However, as described above and in Tro-
chim (1984), the inclusion of terms that are not needed
in the model lowers the efficiency of the program effect
estimate (i.e., inflates standard errors and consequently
underestimates significance).

Refine the model. A conservative way to revise the
initial model would be to examine the highest-order
term in the model and its corresponding interaction term
to see if they can be eliminated. Here, this would in-
volve removing the cubic and cubic interaction terms
from the initial model and reestimating. These results
are shown in Table 2 under the heading “Revision 1:
cubic terms eliminated.”

Here, the program effect estimate is again positive, but
this time it is significant at a .05 level (b, =37.45, SE[b;]
= 13.55, p = .006). However, as before, the highest-or-
der terms in this model are not significant, and so it
might be revised again, this time eliminating the quad-
ratic terms. The results of this model are shown in Table




Table 1. Estimates for initial model, second-grade
reading program, Providence, Rl school district,
1978-79

Variable b SE(b) p
Constant 216.27346 9.02495  <<.001
Linear (x7) .88212 .49993 078
Program effect (Z,) 21.69478 17.24679 .209
Linear interaction (x: z;) -2.52099 2.85144 .377
Quadratic (x %) .00816 00774 292
Quadratic interaction (x; °z,)  -.13967 13471 .300
Cubic (x7 3) -.00003 .00003 266
Cubic interaction (x; “z;) -.00171 .00173 324
R? = 56919

2, under the heading “Revision 2: cubic and quadratic
terms eliminated.” Here, little change is found in the
program effect estimate. Itis worth noting that the linear
interaction term is not significant (although p=.19), and
therefore there is no direct evidence for a difference in
slopes between groups. Consequently, one more model
revision might be tried, excluding the linear interaction
term from the model. The results of this model are
presented in Table 2, under the heading “Revision 3:
linear term only.” As before, this analysis provides evi-
dence for a significant positive effect of the program on
reading scores (b, = 44.6, SE[b,] = 7.5, p <.001).
There are many other ways to examine the various
models that might be specified. For instance, plots of
predicted values or residuals would be especially useful
when comparing models and trying to decide on revi-
sions. Often it is useful to examine R-squares and analy-
ses of various statistics. In this analysis, for instance, the
R? for the initial model is almost identical to the R2for
the final revision, indicating that little information was
lost when the terms were eliminated during revision.
In summary, this illustrative analysis began by noting
the visual evidence of a discontinuity indicative of a
positive program effect. Also, some slight evidence of
nonlinearity in the distribution was noted that led initial-
ly to specification of a third-order RD model. The pro-
gran effect estimate for this model was indeed positive
but not statistically significant. In all subsequent re-
vised models where attempts were made to eliminate
likely unneeded terms, the program effect was positive
and statistically significant, and there was little evidence
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of loss of information. On this basis, it would be reason-
able to conclude that the analysis supports the hypothe-
sis that the program had a positive effect on reading
scores.

Some comments on design variations. The analytic
model reported above is stated in terms of the basic RD
design. However, it can be revised easily and extended
to other RD variations discussed in this article. Each of
the major variations presented earlier will be discussed
briefly.

Analyses with multiple cutoff points. When multiple
cutoffs are used, multiple analyses will be necessary.
For the simplest case of two cutoff values (as in Fig. 6),
three types of analyses will be useful. First, all cases
within the cutoff interval (i.e., between the cutoffs) can
be eliminated, and the program effect can be estimated.
Here, the effect of the program probably would be esti-
mated at the cutoff value that separates the RD compari-
son group from the rest of the cases (i.e., at a score = 4
inFig. 6). Second, all cases falling outside of the cutoff
interval can be excluded, and the appropriate analysis
can be conducted on the remaining cases. Thus, if there
is random assignment within the interval, the analyst
could conduct a traditional ANCOVA analysis. If the
within-interval groups are nonequivalent, appropriate
statistical adjustments for selection bias might be at-
tempted. Finally, all cases would be included in a single
analysis. Again, it is probably most sensible to estimate
the effect of the program at the cutoff point that places
all program participants on one side. Thus, in Figure 6,
it makes more sense to estimate the program effect
atx =4 than atx = 5, because some program participants
fall within the interval of 4-5, whereas no program cases
have a pretest less than 4. Thus in both RD analyses of
the data above, the analyst typically would subtract the
comparison group cutoff value rather than the program
group cutoff because there might be an interaction be-
tween pretest and program that would change the shape
of the regression function. Since any such interaction
presumably would affect all program participants, it is
important that the estimate be calculated at a point on the
pretest where this interaction is likely to commence.

In any case where there are multiple cutoffs and more
than two groups (as in Fig. 7), it will be desirable to
estimate many different program comparisons. For in-
stance, in the example shown in Figure 7, the analyst-
might combine all program cases at each wave of the
program and do a basic RD analysis, or the analyst could
keep different program groups separate in order to ex-
amine long-term effects of the program. In this latter
case, multiple program assignment variables and all
necessary interaction terms would have to be con-
structed for the analytic model (e.g., z1, z3, z3). Clearly,



Table 2. Estimates for revised models, second-grade reading program, Providence, Rl school district,

1978-79
Variable b SE(b) p
Revision 1: cubic terms eliminated
Constant 209.1262 6.3448 <.001
Linear(x; ) 1.3919 2006 <<.001
Program effect (Z,) 37.4535 13.5511 .006
Linear interaction (x] z;) -.4602 1.2013 702
Quadratic (x; ) -.0003 .0014 .836
Quadratic interaction (x; %z;) -.0023 .0246 925
R> = .56706
Revision 2: cubic and quadratic terms eliminated
Constant 210.11 4.22 <.001
Linear (x7) 1.35 .06 <.001
Program effect (Z,) 35.84 10.06 <.001
Linear interaction (x; z;) -.51 .39 .193
R*> = 56702
Revision 3: linear term only
Constant 210.87 4.18 <.001
Linear (x;) 1.34 .06 <.001
Program effect (Z;) 44.61 7.50 <.001
R? = .56542

as more cutoffs and groups are added, the model-speci-
fication issues are complicated.

Analyses with multiple assignment measures. Two
versions of multiple assignment measure RD designs
were discussed. The first has multiple measures, each
of which has its own cutoff. In this case each assignment
measure would be transformed by having its own cutoff
value subtracted from it to create x §. In the analysis, all
transformed assignment measures, group membership,
higher-order terms, and interactions would be included.
For the simple first-order (or linear case) with these
assignment variables, the analyst could use the model:

Y = b; +byz; + byxi +bsxy +byX7Z +bsx,] z; +

beXai Zi +bsX57 Z; + g
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This model does not include any two-way assignment
variable interaction terms (e.g., bx; Tx; 7or bx; ¥x2 7' z)
or any three-way terms (e.g., bx;Tx7x37 or
bX; %2 T%372 ;), but such an assumption may not be
reasonable because the primary interest is in the esti-
mate of by, the program effect, not in interactions per se.
Nevertheless, it should be apparent that the use of multi-
ple assignment variables with higher-order polynomial
models will quickly lead to an unwieldy analysis.

The situation is simpler when multiple assignment
variables and an “or” assignment rule are used. In this
case the real assignment variable might actually be la-
beled the “number of assignment variables on which a
person meets the criterion.” Thus, with 10 assignment
variables, there is a single preprogram measure with
values between 0 and 10, where the value for any person
indicates how many of the 10 separate assignment crite-
ria are met. With this as the x; variable, the basic RD
analysis as described earlier would be conducted. When




multiple assignment variables are combined into a
single index and a cutoff on that index is assigned, the
analysis is also a straightforward application of the basic
analysis described initially.

Conclusion

The following, simple guidelines could be used to
make a preliminary assessment of the appropriateness
or feasibility of an RD design for a given study. As with
all simplifications, there are potential hazards here, and
these guidelines should not be considered a substitute
for a more careful reading of this article and the other
sources cited. Three basic guidelines are suggested.

1. Program guideline. The purpose of the research
must be to assess the effect of some program or
treatment. As simple as this may sound, often it is
not a trivial consideration. The purpose of the study
must be to investigate a causal hypothesis; donot let
the research design define the research question.
Just because a program is assigned by a cutoff strat-
egy doesn’t mean there is interest in evaluating that
program. The researcher must be especially careful
that the cutoff-based assignment is used for the pro-
gram that is to be evaluated. For instance, if patients
are admitted to a special hospital unit on the basis of
a cutoff on a severity of illness indicator, it may be
possible to use the RD design to evaluate the effect
of that entire unit on subsequent illness. However,
if the interest is in assessing the effects of a new
surgical technique that is given only to some of the
people admitted to the unit (and solely on the basis
of physician discretion), then it doesn’t really help
that unit assignment is cutoff based. It is important
to be clear about what program or programs are
being evaluated and their relationships to the cutoff
rule.

2. Assignment guideline. Persons (or units) must be
assigned to the program solely on the basis of a
cutoff score; this is the distinguishing characteristic
of the RD design. There must be no exceptions to
this rule, or the quality of the RD design will be
jeopardized. When trying to assess the feasibility of
the RD design, the analyst should not give up on it
simply because a single cutoff value on a single

_preprogram indicator is not feasible. There can be
many different variations that might work in a given
situation—multiple cutoffs on a single assignment
measure, multiple assignment measures with their
own cutoffs, aggregate indices, and so on-but as-
signment to the program must be cutoff-based.
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3. Measurement guideline. There must be (a) mea-
surement of all cases—program and comparison—on
both pre- and postprogram measures and (b) suffi-
cient data to estimate a regression line reasonably,
at least for the comparison group. Often, the first
requirement is extremely difficult to achieve in
practice. Frequently, those who are denied the pro-
gram (the comparison group) are not tracked after
the program is given, and there is consequently no
postprogram measurement on them. Measuring the
comparison group can be an expensive proposition.
In some instances, it may be reasonable to sample
randomly from the comparison cases rather than to
measure the entire group, as described by Trochim
(1984). Secondly, there must be sufficient variabili-
ty on the preprogram measure to enable the estima-
tion of a regression line. Even if this is not possible
for the program group (as was nearly the case in the
simulation of the reading program described earlier,
where there was almost too little program group
pretest variability to warrant fitting a line through
that group), it must be the case, at least minimally,
for the comparison group.

When considering the possibility of an RD design,
each of the guidelines should be examined to ensure that
the necessary minimal program, assignment, and mea-
surement conditions are met. If this appears to be the
case, it would then be reasonable to examine the circum-
stances in greater detail in order to set up the design
correctly.

RD designs appear to have great promise for evalua-
tion in health contexts. They stand as perhaps the stron-
gest alternative to randomized experiments. Given the
wealth of quantitative indicators and the tendency of
many medical and health-related professionals to use
such indicators as the basis for making decisions, RD
designs may be directly applicable or usable with only
minor modifications to existing procedures.

However, RD designs are not a panacea. They are
based on some fairly restrictive assumptions: that as-
signment can be based solely on cuioffs, that more than
just the recipients of the program can be measured, that
there is enough premeasure variation in the comparison
group to estimate the true pre-post relationship, and so
on. In many contexts, one or more necessary conditions
are likely to be absent, thus ruling out the use of this
design. But when all conditions are met, the RD design
should be considered a strong method for evaluating
health programs.

References

American Psychiatric Association. (1980). Diagnostic and statisti-
cal manual of mental disorders (3rd ed.). Washington, DC: Author.




Berk, R.A. and D. Rauma. (1983). Capitalizing on nonrandom as-
signment to treatment: A regression discontinuity of a crime pro-
gram. Journal of the American Statistical Association, 78, 21-28.

Boruch, R.F. (1975). Coupling randomized experiments and approx-
imations to experiments in social program evaluation. Sociological
Methods and Research, 4, 31-53.

Campbell, D.T. (1986). Relabeling internal and external validity for
applied social scientists. In W.M.K. Trochim (Ed.), Advances in
quasi-experimental design and analysis [Special issue]. New Direc-
tions for Program Evaluation, 31, 67-77.

Campbell, D.T. and J.C. Stanley. (1963). Experimental and qua-
si-experimental designs for research on teaching. In N.L. Gage
(Ed.), Handbook of research on teaching. Chicago: Rand McNally.

Campbell, D.T. and J.C. Stanley. (1966). Experimental and qua-
si-experimental designs for research. Chicago: Rand McNally.

Cook, T.D. and D.T. Campbell. (1979). Quasi-experimentation:
Design and analysis issues for field settings. Chicago: Rand
McNally.

Draper, N.R. and H. Smith. (1981). Applied regression analysis.
New York: John Wiley and Sons.

Goldberger, A.S. (1972). Selection bias in evaluating treatment
effects: Someformalillustrations (Discussion Papers, 123-72). Mad-
ison: University of Wisconsin, Institute for Research on Poverty.

Judd, C.M. and D.A. Kenny. (1981). Estimating the effects of social
interventions. New York: Cambridge University Press.

. Reichardt, C.S. and H.F. Gollob. (1986). Satisfying the constraints

139

of causal modeling. In W.M.K. Trochim (Ed.), Advances in qua-
si-experimental design and analysis [Special issue]. New Directions
for Program Evaluation, 31, 91-107.

Tallmadge, G.K. and C.T. Wood. (1978). User’s guide: ESEA Title
I evaluating and reporting system. Mountain View, CA: RMC Re-
search Corporation.

Trochim, W.M.K. (1984). Research design for program evaluation:
The regression-discontinuity approach. Beverly Hills, CA: Sage.

Trochim, W.M.K. (1985). Pattern matching, validity, and conceptu-
alization in program evaluation. Evaluation Review, 9, 575-604.

Trochim, WM.K. and C.H. Spiegelman. (1980). The relative assign-
ment variable approach to selection bias in pretest-posttest group
designs. Proceedings of the Social Statistics Section, American Sta-
tistical Association.




Comment
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The Applicability of the Regression- Dlscontmmty Design

in Health Services Research

Harold S. Luft, Ph.D.

The description of the regression-discontinuity design
provided by William Trochim (in this volume) is quite
exciting. It offers a valuable addition to the standard
randomized controlled trial (RCT) as a method of allo-
cating subjects to treatment and nontreatment groups.
In fact, in some ways it may be preferred to the RCT
which is currently the “gold standard” in medical re-
search. It is clear that significant health policy results
often carry greater weight when derived from RCTs than
from other methods. This is evidenced by the obvious
weight given the findings from the Rand health insur-
ance study (Newhouse, Manning, Morris, and others,
1981) with its randomized design.

It should be pointed out that the regression-discontinu-
ity (RD) design is applicable only when there is con-
trolled assignment of subjects to treatment and nontreat-
ment groups. It is not appropriate for the analysis of
simple observational data, nor is it appropriate for situa-
tions in which there is uncontrolled nonexperimenter
discretion in assignment. However, in appropriate cir-
cumstances, RD appears potentially valuable.

Two major advantages of the RD design are high-
lighted here. The first is its ability to address certain
ethical problems that may arise in the application of the
classic RCT design. The potential ethical advantage is
mentioned in Trochim’s paper, but this discussion will
explain how an economist also could apply the RD de-
sign. The second advantage is more subtle and perhaps
more controversial, since it suggests a practical analytic
advantage of the RD design over the RCT. Itis clear that
if an RCT can be undertaken, the study design will be
stronger, and the results will be more readily accepted
than with the RD approach. However, if an RCT is not
" feasible due to ethical or logistical reasons, RD may
provide a useful alternative.

In the basic RD approach, subjects are assigned to
treatment and nontreatment groups based on some cut-
off score on a pretreatment measure. This assignment
process has obvious advantages in situations such as the

Dr. Luft is Professor of Health Economics in the Institute for Health
Policy Studies, University of California at San Francisco.
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clinical trial of a new drug. If there are plausible argu-
ments to believe the new drug is beneficial, it may be
difficult ethically to randomly withhold it from some
individuals merely to prove its efficacy. Consider for
example the situation of AIDS patients in the trials of
AZT. The RD design allows researchers to offer the
drug to all those considered most severely ill, as long as
there is some reasonable way of scoring severity.

Similar situations can arise in more classic health serv-
ices research problems. For example, a recent project
was undertaken to design an intervention that would
provide feedback to hospitals concerning their quality
of care based on the analysis of routinely available pa-
tient discharge abstracts or billing data. Originally, a
randomized design was considered in which only half
the hospitals identified as having potential quality of
care problems would be offered the information and
consultation to help interpret the data. While this classic
RCT (albeit without blindness) would provide the clear-
est measures of the effectiveness of the feedback inter-
vention, there was concern about the ethics of withhold-
ing data about potential quality of care problems from
half of the hospitals.

In contrast, the following RD design provides a rela-
tively simple solution to this ethical dilemma. The ini-
tial analysis of the data would produce a score indicating
the probability that the number of poor outcomes occur-
ring at each hospital would be observed by chance if the
hospital truly had average quality of care, given its case
mix. This is a natural pretreatment score, and feedback
could be provided to all hospitals with scores above a
certain level, such as a Z-score greater than 1.96. Alter-
natively, since there was concern also about the re-
sources that would be required to provide the on-site
consultation to explain the data, the offer of feedback
could begin with those hospitals having the highest
Z-scores and work down the list until consultation time
was exhausted. This would not guarantee the provision
of feedback to all hospitals that could possibly benefit,
but it would provide at least an objective and ethical way
of allocating limited resources.




In other situations, administrative decisions may lend
themselves to the application of an RD design. For
example, some State Medicaid programs have begun to
use case managers to control the medical care use of
people with patterns of high utilization. Similar systems
have ‘been implemented by some insurers for certain
employers. The often naive evaluations of such pro-
grams compare pre- and postuse for persons enrolled in
the case management program. Such evaluations re-
ceive short shrift from the slightly more sophisticated
analyst who recognizes that after choosing people be-
cause of their high use patterns, regression to the mean
is likely to result in decline in use even if case manage-
ment had no effect. Given the nature of the programs,
it is politically and administratively infeasible to ran-
domly assign high users to managed care and usual cov-
erage groups. However, if data on people assigned to the
program also are available, which is usually the case in
such programs, then an RD design could be used to
determine if the reduction in use is greater than would
be expected due to regression to the mean.

One of the technical problems with RCTs arising from
the ethical issues related to randomization is the need to
focus attention on that group of individuals (or organi-
zations) for whom the treatment is neither clearly bene-
ficial nor clearly unnecessary, based on prior expecta-
tions. Thus, a well designed RCT often considers for
randomization only those people in the mid-range of
some pretreatment criteria, such as patients classified as
mild hypertensives rather than normotensives or those
with high blood pressure. This narrow focus may neces-
sitate a longer period to accrue enough subjects or re-
quire complex multicenter collaborations. Further-
more, the narrow range of subjects makes it difficult to
determine covariates that may enhance or reduce the
treatment effect. The RD approach, in contrast, allows
the inclusion of a much broader range of subjects, possi-
bly counteracting the reduced power of the design com-
pared with the RCT with a lower cost per subject. Much
more work is needed to examine the costs of achieving
equally credible results using alternative designs under
various situations.

The second advantage of the RD design is actually the
flip side of its major weakness, the need to adequately
model the true relationship between the assignment
variable and the posttreatment outcome measure. In a
sense, the heart of the RD design is in identifying wheth-
er a discontinuity or break in the relationship occurs at
the point differentiating the treatment and nontreatment
groups. This discontinuity may be a shift in the inter-
cept, a change in slope, or some other more complicated
relationship. However, if the underlying relationship is
not well understood, it may be difficult or impossible to

determine whether the treatment altered the effect. This
means that much more attention must be given to the
underlying relationship between pretest-and posttest
measures than is the case in an RCT when just the post-

- test measures are necessary. Health services research-
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ers, however, often spend much of their time developing
such models using nonexperimental data. Applying
such expertise to the RD approach in an experimental
situation may have a substantial payoff. This is an ex-
ample of the application of “little t-theory” to the design
and analysis of the data.

For example, suppose that the treatment under study
has an effect related to the assignment score, which im-
plies a shift in slope for the treatment group rather than
just a change in intercept. This is probably a fairly
frequent phenomenon. In the quality of care study de-
scribed above, hospitals with very high Z-scores may be
more likely to have real quality of care problems. In the
case of hospitals with lower scores, the likelihood that
the observed outcomes were due to chance increases, so
feedback would have little effect. By forcing the analyst
to think about and focus on the underlying relationship,
the RD design may be more likely to point to where
interventions are more or less effective. It may even be
easier to identify an effect with an RD than an RCT
design. If a classic RCT had been undertaken, say by
splitting the sample of eligible hospitals in half, it may
have been more difficult to detect an effect because of
the dilution of the treatment group by the inclusion of
hospitals with relatively low Z-scores (for which there
is little effect) and, conversely, by the inclusion of high
Z-score hospitals in the control group.

The above comparison implies a fairly sophisticated
RD design and analysis in contrast to a rather simple
RCT design, which of course is unfair. Adjustors canbe
added to an RCT and similarly increase its power, but
such an approach is sometimes difficult for readers and
especially policymakers to understand and accept. A
major advantage of the RCT is its simplicity; once the
analysis has been complicated, it appears to some that
the data are being “cooked” to obtain a desired result.
At this point, the RD design may begin to appear even
more straightforward and thereby overcome one of the
obstacles to its use that is based on its purported com-
plexity and lack of “face validity.”

In conclusion, the regression-discontinuity design
seems a worthy addition to the set of tools available to
the health services researcher. In particular, it provides
a way to avoid the ethical dilemma of withholding treat-
ment to those most in need, and it addresses the regres-
sion to the mean problem in programs focusing on “out-
liers” or high users. The RD approach also relies on the




careful wedding of analysis and design, which is likely
to lead to improved research.
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Comment
.

Regi-ession-Discontinuity Design in Health Evaluation

Sankey V. Williams, M.D.

Trochim (in this volume) claims that the regres-
sion-discontinuity (RD) design is “. . . perhaps the stron-
gest alternative to randomized experiments . . ..” The
implication is that the RD design should replace alterna-
tive nonrandomized designs in some studies and could
replace randomized clinical trials in other studies.
Trochim is right—but only partly right.

No doubt all researchers have projects that cannot be
completed because of methodological problems, and
two such projects will illustrate some of the advantages
and disadvantages of the RD design.

The first project attempted to determine whether
cost-control measures imposed by Pennsylvania Blue
Shield were effective (Schwartz, Williams, Eisenberg,
and Kitz, 1982). Pennsylvania Blue Shield is the largest
Blue Shield organization in the country, and it is the
fiscal intermediary for Medicare in Pennsylvania. Con-
sequently, it pays bills from most of the State’s physi-
cians. To control costs, Pennsylvania Blue Shield devel-
oped a unique monitoring program. Each physician’s
total yearly charges were calculated separately for each
service; for example, total charges were calculated sepa-
rately for the physican’s office visits, hospital consulta-
tions, and interpretations of electrocardiograms. Indi-
vidual physicians then were combined into peer groups
depending on their specialty. The distribution of
charges in each peer group was examined to determine
the cutoff value below which 95 percent of physicians
could be found. This process identified the 5 percent of
physicians who had the highest total charges for each
service in each peer group. Finally, for every physician

Pennsylvania Blue Shield calculated the total cost of all

services that was above the 95 percent cutoff values. If
the total was $5,000 or greater, the doctor received an
informational letter that described the calculations,
identified the physician as having unusually high
charges, and promised no further action (which may or
may not have been believed).

Because of problems with extracting data, only inter-
nists and podiatrists were included in the study. Of all

Dr. Williams is Director of the Section of General Internal Medi-
cine, Leonard Davis Institute of Health Economics, and Professor
of Medicine and Health Care Systems, University of Pennsylva-
nia.
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internists studied, 405 did and 1,400 did not receive a
letter. Of all podiatrists, 85 did and 709 did not receive
a letter. The study was concerned with the effects of
these letters on subsequent charges. If the letters were
effective, subsequent charges should have decreased.
The study had a pre-post design with a nonrandomized
control group.

The control group consisted of physicians who did not
receive a letter but did bill for services in the same time
period as those who received a letter. In Figure 1, the
horizontal axis indicates the number of years before and
after receipt of the letter. The vertical axis refers to total
charges (per patient), adjusted for inflation. In neither
control group was there any confounding effect that
could be related to receipt of the letter by matched physi-
cians in the study group (in Fig. 1, the letter was received
at time zero as indicated by the vertical line).

Figure 1. Pattern of charges for control groups
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Figure 2. Pattern of charges for internists and
podiatrists who received a letter
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Figure 3. Expected pattern of charges for
combined control and letter groups with the
RD approach
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In contrast, podiatrists and internists who eventually
received letters increased their charges each year until
they reached the cutoff value (Fig. 2). After receiving

a letter, they decreased charges sharply, and the effect
persisted for as long as they were followed. When re-
gression lines are calculated separately for pre- and
postletter values and the slopes are compared, the differ-
ences are statistically significant. However, the design
has been criticized because it does not distinguish re-
gression to the mean from the effect of the letter. Critics
argue that those with the top 5 percent of charges before
the letter are more likely to regress toward the mean than
those in the control group, which might explain some or
all of the letter’s apparent effect.

The RD design may provide a solution. If the data were
reanalyzed using the RD design, the results might be as
diagrammed in Figure 3. Here, the horizontal axis de-
scribes billed charges before receipt of the letter, and the
vertical axis describes billed charges after receipt of the
letter. The graph includes data from all physicians—both
those who did receive a letter and those matched for the
same specialty and time period who did not receive a
letter. The higher the billed charges before the letter, the
higher they would be expected to be after the letter. If
there had been no letter, the regression line would follow
the dashed line. If the letter were effective, the disconti-
nuity represented by the solid line to the right of the
vertical line should be observed.

The beauty of this new analysis is that it is not biased
by regression to the mean. According to Trochim, the
low-scoring pretest group is expected to evidence a rela-
tive gain on the posttest and the high-scoring pretest
group to show a relative loss. However, it is not ex-
pected that regression to the mean will result in a discon-
tinuity in the bivariate relationship coincidental with the
cutoff point. If Trochim is correct, the data can be reana-
lyzed to distinguish between regression to the mean and
a letter effect.

In this case, Trochim was right. The RD design has
superior methodological properties that make it more
useful than the pre-post design with nonrandomized
control groups.

The second project occurred several years ago. A ran-
domized clinical trial was planned to determine if pa-
tients with heart attacks should be cared for in special
coronary care units, which is standard practice, or
whether they could be cared for on standard wards with
telemetry devices that monitored for cardiac arrhyth-
mias. Arrhythmias are the chief preventable cause of
death in acute heart attacks, and this project was in-
tended to show that arrhythmias could be detected and
treated equally well in both places. The trial seemed
important because coronary care units never had been
shown to be effective in randomized clinical trials, new
telemetry devices that allowed computer monitoring
had been developed, there were theoretical reasons why



special units might actually induce arrhythmias, and
there were important cost differences between the two
types of care. It was proposed that all heart attack pa-
tients would be admitted to the coronary care unit for the
first 24 hours. During this period, an index would be
calculated to predict the probability of hospital death.
Patients with mild heart damage who fell below a cutoff
value on the index would be randomized either to stay
in the unit or to be transferred to ward telemetry. The
outcome measure was hospital mortality.

A proposal for the trial was submitted to the National
Heart, Lung, and Blood Institute. It was reviewed by the
Clinical Trials Review Committee who liked it well
enough to conduct a site visit. In the end, however, the
proposal was not funded. The decision was close
enough that the whole episode became the subject of a
case study conducted by RAND and funded by the Na-
tional Center for Health Services Research and Health
Care Technology Assessment (NCHSR) on the prob-
lems of funding studies of standard medical practice
(Hammons and Kahan, 1985).

There were a variety of problems. This proposal had
all the problems that plague most other randomized clin-
ical trials that look at important medical-practice issues.
It was big. Because only small differences in death rates
were expected in a population that had a low death rate
to begin with, power calculations indicated that 2,300
patients were needed to have a reasonable chance of
success. This many patients required that eight hospi-
tals had to be involved, greatly increasing the project’s
complexity. Even with eight institutions, 4 years would
be needed to complete the study, which meant the results
would be slow in coming, perhaps slow enough that
practice would change in the interim and make the ques-
tion obsolete. To pay for enrolling so many patients over
such a long time, over $5 million would be needed,
which was expensive by NIH standards. Finally, there
was the ethical issue; given what was and was not
known, was it ethical to randomize patients? Perhaps
surprisingly, this was not much of an issue in this in-
stance. Most observers believed that about 50 percent
of eligible patients would consent to be randomized.

According to Trochim, “. . . the [RD] design is a strong
competitor to randomized designs when causal hypoth-
eses are being investigated.” What would have changed
if, instead of randomizing, the RD design had been
adopted? In the RD design, all patients with mild heart
attacks would have been transferred to ward telemetry,
and the results might have been those in Figure 4. Points
on the graph are defined by the predictive-index value,
which is on the horizontal axis, and the hospital death
rate, which is on the vertical axis. Lower index values
should be associated with lower death rates, regardless
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of where the patient is cared for. The dashed line de-
scribes what would have been observed if there were no
differences between the special unit and ward telemetry,
which is what was expected. The two solid lines to the
left of the vertical line describe what might have been
found if there were differences. If ward telemetry was
better than the special unit, the lower line would have
been observed; if it was worse, the upper line would
have been observed.

It does not appear that the RD approach would have
solved any of the problems associated with this study.
Citing the work of others, Trochim states that, .. . up to
two-and-a-half times as many participants are needed in
a [RD] design as in a randomized experiment in order to
obtain comparable levels of statistical precision.” With
the RD design, more eligible patients probably could
have been included, and in addition, information from
patients with high scores could have been used. Howev-
er, little would have changed. With the RD design,
4,000-5,000 patients would have been required, instead
of the 2,300 patients needed for the randomized design.
As aresult, about the same number of institutions would
have been required with all their complexity, and it
would have taken about the same number of years to
enroll all the patients. The price would not have
changed very much. The ethical issues associated with
randomization would have been avoided, but ethical
issues did not prevent this proposal from being funded.

The RD design does not solve the problems posed by
randomized clinical trials of medical practice, because
its inefficiency fails to reduce the size, complexity, dura-
tion, or expense of these trials. The RD design might be
an attractive alternative, however, when substantially
fewer than 50 percent of eligible patients can be ran-
domized. Only then would the ability to look at data
from all patients compensate for the relative inefficien-
cy of this design.

The RD design is not supposed to replace all random-
ized clinical trials. The design is especially promising
when ethical considerations make it difficult to random-
ize patients, which was not an issue in the preceding
example.

The following example is dominated by ethical issues.
Consider a situation in which a promising new drug has
been developed for the treatment of acquired immune
deficiency syndrome, AIDS. The drug has been found
to prevent replication of human immunodeficiency vi-
rus (HIV) in the laboratory. It has undergone short-term,
uncontrolled trials in a small number of humans. These
trials have defined the drug’s absorption, volume of dis-
tribution, and metabolism and found few side effects. It
is time for larger clinical trials that will test clinical
effectiveness and measure the true incidence of side
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effects, but the drug is so promising and the need for
effective therapy is so great that randomization is con-
sidered unethical by some.

Would the RD design solve this problem? Candidate
patients could be assigned an immunodeficiency score
based on the number and proportion of specific lympho-
cytes in their circulating blood. A cutoff value could be
determined to define the level of immunodeficiency that
would qualify a patient for the new drug. All patients
below this level would receive the new drug, and all
those above the level would receive conventional thera-
py. The outcome variable could be the immunodeficien-
cy score after a defined course of therapy, the number of
opportunistic infections in a defined time period, or
death.

How would patients and their physicians respond?
Patients whose immunodeficiency score was just above
the cutoff level would be denied the drug. These pa-
tients and their physicians would argue for exceptions to
be made, and they would seek alternative sources for the
drug, including black market sources if recent experi-
ence is a guide. Although the RD design may relieve
some of the ethical pressure, it does not solve the prob-
lem. It merely shifts concern away from patients who
are randomized to receive placebo to those who have
immunodeficiency scores just above the cutoff value. If
some of these patients were successful in getting the
drug, either through an exception in the study or by
finding an alternative source outside the study, the cardi-
nal assumption of the RD design would be violated. The
design would be converted into a “fuzzy” design; fuzzy
designs cause problems because they produce biased
results. Trochim has proposed the use of a “relative
assignment variable” to deal with fuzzy designs
(Trochim, 1984). The relative assignment variable has
been shown to adjust for assignment bias in a small
number of studies that used simulated data. However,
too little is known about this novel approach for it to be
used in a study where the results would be used to define
life-or-death therapy for tens of thousands of potential
patients.

Nevertheless, if the integrity of a randomized clinical
trial could be maintained, it is possible that the integrity
of an RD trial could be maintained as well. Pressure to
create exceptions to the RD assignment rule probably
would be no more intense than pressure to violate ran-
dom assignment. Therefore, the RD design probably
could be implemented without the need for a fuzzy anal-
ysis.

Given that a true RD trial could be implemented and
analyzed without fuzzy methods, is it a feasible replace-
ment for a randomized clinical trial?
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Figure 4. Expected results of the myocardial
infarction study with the RD approach
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The RD design is less efficient than the randomized
clinical trial. Thus, more patients will have to be in-
cluded in an RD design than in a randomized clinical
trial. If the drug is eventually found safe and effective,
more patients will have been denied optimal care in an
RD design than in arandomized clinical trial. If the drug
is found to have unacceptable side effects for the level
of effectiveness, more patients will have been exposed
to the risk of side effects in an RD design than in a
randomized clinical trial. Either way, more patients will
be given the wrong therapy in an RD design than in a
randomized clinical trial.

The RD design does not present a very attractive alter-
native to the randomized clinical trial, even when ethical
issues dominate. The only exception is when ethical
issues prevent a randomized trial from heing performed
at all.

In summary, it appears that Trochim is correct in as-
serting that the RD design can and perhaps should re-
place other nonrandomized designs in health services
research. This is useful information that is not widely
known. For example, a MEDLINE search revealed no
studies—either in the medical literature or in the health
services literature—that used the RD design. However,
because of its relative inefficiency, the RD design can-
not compete with the randomized clinical trial, except
when fewer than 50 percent of eligible patients can be
randomized, including the special case in which so few



patients can be randomized that a randomized trial can-
not be conducted.
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