Avwetently published Evaluation Review article (April 1990) claimed that because of random
measurement error in the pretest (and the regression toward the mean that results) the estimate
of the treatment effect of the regression-discontinuity (RD) design is biased. A conceptual
approach and a set of computer simulations are presented to arrive at the opposite conclusion:
random measurement error in the pretest does pot blas the estimate of the treatment effect in the
RD design. This article, the first of two dealing with measurement error in the RD design,
concentrates specifically on the case of no interaction between pretest and treatment on positest.
The claim that the RD effect estimate is not blased due to measurement error is in full agreement

with the conclusion reached by several authors who have examined the design over the last two
decades.
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There is no more rational procedure than the method of trial and error— of conjecture
and refutation: of boldly proposing theorics; of trying our best to show that these are

erroncous; and of accepting them tentatively if our critical efforts are unsuccessful.
(Popper 1963, 51)

From the amocba to Einstein, the growth of knowledge is always the same: we try to
solve our problems and to obtain, by a process of elimination, something approaching
adequacy in our tentative solution. (Popper 1972, 281)
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¥The regression-discontinuity (RD) design fills an important niche within
the' constellation of research designs used in program evaluation and ap-

 plied social research (Trochim 1984). The RD design is distinguished from

other pretest-posttest, treatment-control group designs by its unique method
of assignment to treatment — persons are assigned to receive treatment solely
on the basis of a cutoff value on the pretreatment (pretest) measure, with
all persons scoring on one side of the cutoff assigned to one group and all
scoring on the other side assigned to the other. Although the design is
largely underused, there are several notable implementations that deserve
recognition.

Seaver and Quarton (1976) used the RD design to examine how college
students’ grades in one quarter (the posttest measure) were affected by
making the dean’s list on the basis of their grades from the previous quarter
(the pretest measure), All students in the study who had a first-term grade
point average of 3.5 or above were placed on the dean’s list and considered
to be the experimental group, and those below 3.5 were considered the control
group. The RD design was used extensively in the mid and late 1970s under
the name “Model C” in the evaluation of compensatory education programs
mandated by Title I of the Elementary and Secondary Education Act of 1965
(Tallmadge and Wood 1978; Trochim 1982). Since then, applications of the
design outside of compensatory education have begun to surface. Lipsey,
Cordray, and Berger (1981) applied the RD design as one component inan
evaluation of a juvenile diversion program. Cutoff points on a disposition
assignment continuum (DAC), a composite of 11 factors that played a major
role in police officer’s decisions regarding the disposition of individual cases,
determined each case assignment into cither the counsel-and-releasc program
(lower values of DAC), the diversion program (near the middle of DAC), or
the probation program (higher values of DAC). Recidivism percentages were
the values of the outcome measure. Berk and Rauma (1983) conducted a
large-scale criminal justice evaluation using the RD design to study whether
ex-offenders who received unemployment benefits (experimental condition)
have lower reincarceration rates than do ex-offenders who did not receive
such benefits (the control condition). The number of recorded hours of prison
work was the sole factor in determining whether or not unemployment
benefits would be received, with the cutoff of program eligibility set at 652
hours.

Visser and de Leecuw (1984) used the RD design to evaluate a project
designed to educate employees about their life-styles in relation to risk of
heart discase. Their example used a prespecified value of the amount of serum
cholesterol in the blood to partition subjects who were given advice about
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their life-styles, especially their eating and smoking habits, from subjects
who were not. Aftera few years, serum cholesterol posttreatment values were
recorded to sée if the intervention was effective. A RAND study by Carter,
Winkler, and Biddle (1987), prepared for the National Institutes'of Health
(NIH), used the RD meéthod to evaluate the research productivity of the
Research Career Development Award (RCDA) program of NIH. Priority
scores determined whether or not an applicant would be funded as a partic-
ipant in the program. Havassey et al. (1989) are involved with an in-progress
investigation of the relative effectiveness of inpatient versus outpatient
treatment for persons dependent on cocaine. They are using two cutoff points
on a composite pretreatment assignment measure of severity of cocaine
addiction to define a cutoff interval, where all persons scoring below the
lower cutoff (less addicted patients) are automatically assigned to outpatient
status, those scoring higher than the upper cutoff (more addicted patients) are
assigned to inpatient status (the more intensive therapy), and those scoring
between the cutoffs are randomly assigned to the two conditions. Robinson
and Stanley (1989) and Robinson, Bradley, and Stanley (1990) have imple-
mented an RD design to the evaluation of an accelerated mathematics
program for gifted children at different grade levels. Achievement tests were
used as preprogram (pretest) and postprogram (posttest) measures.

Although the bias of ordinary least squares (OLS) estimators in the
presence of fallibly measured independent variables has been adequately
documented for observational studies (Lord 1960, 1967, Cochran 1968,
1970; Griliches 1974, 1986; Fuller 1987; Chatterjee and Hadi 1988), some
confusion apparently exists about the consequences of measurement error in
the regression-discontinuity design. Stanley and Robinson (1990a) limited
their discussion to an analysis of covariance (ANCOVA) model with a single
covariate in arguing that random measurement error on the pretest assign-
ment variable in the RD design results in a biased estimate of the treatment
effect. If their conclusion were true, the RD design would be compromised
and the methodological literature that states otherwise would be wrong. In
this article, we use the term treatment effect to refer to the effect of the
treatment at any given value along the pretest. And because we are assuming
no interaction effect, the treatment effect is an addmvc constant across the
pretest.

Contrary to the claim by Stanlcy and Robinson (1990a), the RD design
does not yicld a biased treatment effect estimate due to error in measurement.
Subsequently, Cappelleri (1990a) convinced Stanley and Robinson of the
error of their previously published statements about RD’s bias, and they have
since recanted in Stanley and Robinson (1990b). The discussion presented
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here will use the term measurement error 10 mean random measurement
error —specifically, random measurement error in the continuous pretest
measure. There are different types of measurement error models (Cochran
1968; Fuller 1987). Just like Stanley and Robinson (1990a), we are concerned
only with the simplest, although not unrealistic, variation. This type is based

on the classical true score model (Carmines and Zeller 1979) and takes the
form

X,=Ty+py  i=12...,n 1

where X represents the observed (fallibly measured) score for the ith obser-
vation, T; represents the true (perfectly measured) score for the ith observa-
tion, u, represents the (random) measurement error in X, and n represcnts the
total sample size.

Rubin (1977) and Goldberger (1972) provide rigorous statistical proofs
that show why measurement error in the pretest does not bias the treatment
(main) effect estimate in the RD design. Here we provide an intuitive
explanation and Monte Carlo simulations to that end. We limit our focus to
the ANCOVA model for ease of exposition, but the same conclusions apply
to a gencral multiple linear regression model. A follow-up article by Trochim,
Cappelleri, and Reichardt (forthcoming) deals specifically with showing that
the treatment effect estimate remains unbiased even when an interaction
effect exists. We assume throughout that the fitted ANCOVA model correctly
specifies the true functional form between pretest (X) and posttest (Y), and
that the relevant assumptions of multiple regression analysis are not seriously
violated, It is also assumed that the binary treatment variable contains no
misclassification error: All subjects are corrcctly classified into the treatment
group in which they belong.

First, a brief review of the RD design is presented. Then, an intuitive
rationale and computer simulations are presented to explain why the treat-
ment effect estimate is unbiased in the RD design even when the pretest
assignment measure contains measurement error.

THE REGRESSION-DISCONTINUITY DESIGN

The RD design is a pre-post, treatment-control strategy that is character-
ized by its method of assignment to treatment — persons are assigned to either
the treatment or control group solely on the basis of a cutoff score on the
pretreatment measure. In notational form, the simplest RD design can be
depicted as




where the C indicates that groups are assigned by a cutoff score on the pretest,
an O stands for the administration of a measure to a group (either before or
after trealment), an X depicts the implementation of a treatment, and each
group is described on a single line (i.c., program group on top, control group
on the bottom). »
Ahypothetical study of the effect of a new medical treatment for inpatients
with a particular diagnosis can be used to illustrate how the RD design works.
(Throughout this article pretest and pretreatment are taken as synonymous
terms, as arc posttest and posttreatment; moreover, we interchangeably use
the terms program and treatment in referring to an intervention.) For ethical
reasons the new treatment is given to the patients who are most ill. For each
patient there is a continuous quantitative indicator of severity of illness that

is a composite rating that can take values from 1 to 100, where higher scores -

indicate greater illness. A pretreatment cutoff score of 50 is (more or less
arbitrarily) chosen as the assignment criterion so that all those scoring 50 or
higher on the pretreatment indicator are to be given the new treatment, and
those with scores lower than 50 are given the standard or control treatment.
Figures 1 through 3 depict three possible results using simulated data.

If the treatment is not given (the null case) and patients in both groups are
simply measured at two different times on the same measure, the bivariate
pre-post distribution for the simulated data may be fit by the regression line
shown in Figure 1. Each dot on the figure indicates a single person’s pretest
and postest score. The dot labeled “a” shows an individual who had a high
pretreatment and posttreatment score. This person was severely ill on the first
measure and remained so on the second. The dot labeled “b” shows the pretest
and posttest for an individual who was not severely ill on both occasions. The
vertical line at the pretreatment score of 50 indicates the cutoff point (al-
though for Figure 1 it is assumed that no treatment is given). Because the
solid line through the bivariate distribution depicts the lincar regression line,
the distribution depicts a strong positive relationship between the pretest and
posttest—in general, the more severely ill a person is at one point in time,
the more ill he or she is at another time.

If the treatment is administered and has a positive effect, the result might
look like Figure 2, where it is assumed that the treatment had a constant and
beneficial effect that lowered each treated person’s severity of illness by 5
points. Figure 2 is identical to Figure 1 except that all points to the right of
the cutoff (i.c., the new treatment group) have been lowered by 5 points on
the posttreatment measure, the assumed beneficial treatment effect. The
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Figure 1: Hypothetical Regression Line for an RD Design With No Treatment
Effect

dashed line in Figure 2 shows what one would expect the treated group.’s
regression line to look like if the program had no effect (as was the case in
Figure 1). ) ‘ )
Figure 2 shows how the RD design got its name—a tr?atmenl effect is
implied when we observe a discontinuity in the regression lmes.at the c?utoff
point. This figure portrays a very simple version of the do?sngn wx.th a umforfn
outcome. But it is possible to have a pretest-treatment interaction c.ffect in
addition to an additive treatment effect. Figure 3 is identical to Flgufe 2
except that a —0.5 interaction effect is added to a -5 treatment effect. Besides
inducing a 5-point reduction in the posttreatment scores at the cutoff v.alue
of 50, the treatment further reduces posttreatment scores for treated pauefus
with higher pretreatment scores. The “sicker” a patient is, the more cft:cctwe
the treatment, Again, the dashed line shows the expected regression lu.le for
the no-effect or null case. As in all RD designs, it is the discontinuity in the
regression lines at the cutoff point that implies that the treatment has an
additive treatment effect. : o
This introduction to the RD design describes only the simplest vanatlon:l.
More complex variations as well as important implementation and analysis
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Figure2: Hypothetical Regreasion Line for an RD Design With a Treatment
Eftect of -5 Points

issues are discussed in Sween (1971), Rubin (1977), Cook and Campbell
(1979), Judd and Kenny (1981), Berk and Rauma (1983), Trochim (1984,
1990a, 1990b), and Mohr (1988), among other places.

The standard statistical model for the basic RD design is discussed in
Trochim (1984, 1990a) and is similar to the approach recommended in Judd
and Kenny (1981). Given a pretest assignment measure, X,, and a postpro-
gram measure, Y,, the ANCOVA model assumes only a constant additive
effect term. For an RD design with a linear X-Y relationship, this model can
be stated as follows:

Y, =fo + BxXi+ BeZi+ @i, [2)

where

Xi = preprogram measure for individual i minus the cutoff value, X,

(ie, Xi=X;- X))

postprogram measure for individual i

= binary group variable for individual i (1 if program participant;
0 if comparison participant)

N
]
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Figure 3: Hypothetical Regression Line tor an RD Design With a Treatment
Effect of =5 Polnts Plus an Interaction Effect of -5 Points

A

fo = estimate of comparison group intercept at cutoff
. fx = linear slope estimate :

ﬁz = program or treatment effect estimate

¢, = regression disturbance term for individual i.

The null hypothesis of iniercst tests the true program effect pamrhetcr (i)
Hy:Bz=0

against the alternative hypothesis
Hy: Bz » 0.

Traditionally, the model estimates the program (treatment) effect at the
cutoff poi'nt (Trochim 1984). To accomplish this, the analyst subtracts the
cutoff score from each pretest score. The term X, has a tilde (~) over it to
indicate this transformation on the pretest X,. Of course, with the above
model, it does not matter where the program effect is estimated along the
pretest range, because in the ANCOVA model the two regression lines are
paraliel. The relevant hypothesis is then a simple ¢ test of the regression
coefficient that estimates the treatment effect.
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THE RD DESIGN IN RELATION TO OTHER DESIGNS

It is useful to contrast the RD désign with other similar designs. The RD

design falls into a broader class of pre-post, two-group designs that share the
notation

oxo-

o o
The feature that distinguishes the different types of pre-post, two-group
designs is the manner in which persons or units are assigned to treatment
groups. The pre-post randomized experimental (RE) design uses random
assignment to create the two groups. In the nonequivalent group design
(NEGD), persons (or units) usually self-select into the treatment groups or,
less frequently, are assigned in some unknown, uncontrolled way. This design
is referred to in some quarters as an observational design when assignment
is based on self-selection. In the NEGD, although one might hope that the
two groups are equivalent prior to treatment, because treatment assignment
is not controlled, there is no way to know whether or not this is the case. Thus
the term nonequivalent is taken here as a reminder that group assignment is
determined by the persons themselves (or in some other uncontrolled man-
ner) and is therefore not known perfectly.

There is confusion in the literature regarding the definition of a “true” ex-
periment. Cook and Campbell (1979) argued that a true experiment always
uses random assignment to create comparisons from which treatment caused
change is inferred. By their definition, the RD design is a quasi-experiment
because it lacks the essential quality of random assignment. As such, it would
be logically grouped with other quasi-experimental designs like the NEGD.
In contrast, Mosteller (1990) defined a true experiment as a design in which
the assignment to treatment is controlled by the investigator. Thus he claimed
that the RD design should be considered an experiment: “By this author’s
definition—which is that in an experiment the investigator controls the
application of treatments — the regression-discontinuity design is actually an
experiment” (225). The distinction is more than just semantics. If the RD
design is classified as a quasi-experiment, the implication is that it is subject
to the same types of weaknesses common to other quasi-experiments (e.g.,
observational and NEGD). This article argues that it makes sense to classify
the RD design as an experiment because it operates just like an RE does, at
least with respect to measurement error. When implemented correctly, both
the RE and RD designs yield unbiased estimates of the treatment effect even
when measurement error is present. An intuitive explanation and a set of
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computer simulations are offered to help explain why the RD de'sign fune-
tions like the RE design with respect to measurement error.

INTUITIVE EXPLANATION: TREATMENT
ASSIGNMENT IS PERFECTLY KNOWN

* An intuitive explanation is offered for why the treatment effect estimate
remains unbiased in the simplest RD design, even though pretest scores have
measurement crror. This explanation is not limited to the ANCOVA model;
it holds for the general linear model. Furthermore, the rationale provides a
distribution-free argument; that is, it is “free” or mdependem of the type of
pretest distribution, be it normal or otherwise.

The RD design yields an unbiased estimate of treatment effect because it
incorporates a perfectly known assignment rule that is fully modeled and
accounted for in the ANCOVA analysis. In the basic RD design, subjects who
fall below a preestablished cutoff point on some fallible pretreatment indi-
cator are placed in one group, and those who fall above this point are placed
in the other group. If the treatment goes to subjects most in need of it, as
evidenced by (say) higher pretest scores, the probability of being assigned to
the experimental condition is 1 for subjects whose scores fall above the cutoff
score, and the corresponding probability is 0 for subjects who fall below the
cutoff score. Thus assignment occurs through an abserved treatment assign-
ment (i.c., pretest) variable that renders a completely known decision rule.
It is this assignment variable, X —not some unobserved true score or true
ability value—that completely and perfectly determines group assignment,
Because assignment to experimental and control groups is entirely based on
a known set of observed scores, the treatment effect is isolated by condition-
ing on or controlling for the observed pretest assignment variable in the
ANCOVA analysis — resulting in an unbiased OLS estimate of treatment ef-
fect (Reichardt 1979). .

Similarly, the RE design also incorporates complete knowledge of the
assignment process. Here, however, each. subject regardless of his or her
pretest score has a fixed probability of assignment to the experimental group.
Random assignment across the pretest range renders a known probability of
assignment to either treatment condition, which probabilistically makes the
dichotomous treatment group variable and pretest covariate uncomelated. It
is this expected lack of association between treatment and covariate, trig-
gered by a known assignment rule, that keeps the treatment effect unbiased
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in the RE design when measurement error exists in the covariate. However,
in NEGD (or observational) studies, the underlying determinants of selection
are not known and hence not measured and controlled for in the analysis
(Reichardt 1979). Generally, for NEGD studies, a correction needs to be
made (like the useful correction formulas provided by Stanley and Robinson
1990a) in the ANCOVA model that adjusts thé treatment effect estimate to
account for the unreliability of pretest measurements and for the expected
correlation between the fallibly measured pretest and the treatment group
variable. '

Consider a hypothetical study that relates an individual's posttreatment
measure of systolic blood pressure (the dependent variable) to his or her
pretreatment measure of systolic blood pressure (the assignment covariate)
and whether or not the person exercises regularly (the binary treatment group
variable). In an NEGD or an observational study, a person’s decision to
exercise regularly is dctcrmincd,'v_by his or her true, unobserved level of
motivation to exercise, not by motivation as measured by the pretreatment
measure of systolic blood pressure or anything else. Because systolic blood
pressure as a measure of motivation to exercise is a fallible indicator of the
true level of motivation to exercise, and because it is this true (unknown)
level that underlies the selection process to exercise, the inaccuracies of
measurement found in the pretreatment measure of systolic blood pressure
and its expected correlation to the binary exercise variable must be taken into
account if the coefficient for the exercise variable is to be unbiased.

In contrast, RD design determines selection not by some unknown con-
struct but by the pretest as rmeasured, This design allocates individuals to
cither a regular exercise program or no regular exercise program solely on
the basis of their systolic blood pressure readings. Because systolic blood
pressure is the true cutoff variable, its values really have no measurement
error for the purpose of creating and analyzing the RD design. The only way
to have error in this cutoff variable is to have an assignment strategy that
plans to assign people to treatment groups on the basis of their systolic blood
pressure readings, then add measurement error to it by misclassifying some
of them to the other condition, and then use this fallible measure as the
independent variable in an analysis of data from the design (i.c., the fuzzy
RD design; see Trochim 1984). Stanley and Robinson’s (1990a) adjusted
formula for the OLS estimator of treatment effect, as well as for the OLS
estimator of the slope coefficient, is comrect for NEGD or observational
studies. These formulas are useful to know. But if such an adjustment is used
in the RD design, as they recommend, it will actually induce a bias into the
treatment effect when in fact there was initially no such bias.
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Using this argument that X and nothing else completely determines Z,we
can sce algebraically why the OLS treatment effect estimator is not biased.

- The “corrected” estimators for the¢ RD design provided by Stanley and

Robinson (1990a) originated from the derivations and proof of the econome-
tricians Griliches and Ringstad (1971, Appendix C), who examined the case
when one independent variable, but not the other, is measured with random
error. Griliches and Ringstad’s sct of adjusted estimators, those given by
Stanley and Robinson (1990a), are preceded by and depend on an interme-
diate result that eventually goes into determining the corrected estimators.
This intermediate formula is

EB2) = 82— BxBuzp)r | 3]

where 8, is the true treatment effect parameter, B, is the true slope parameter
and B, zx is the poptilation partial regression coefficient obtained by regress-
ing measurement error, u, on the perfectly measured treatment variable, Z,
controlling for or holding constant the fallibly measured covariate, X.

If the partial population correlation coefficient between u and Z, {control-
ling for X), denoted by R,; , is zero, then this implies that B.zx is zero
because of the direct link between correlation and regression. Examining the
existence of a linear relationship between u and Z, controlling for X, is the
same as examining whether there is a significant partial correlation between
them.

In RD, Z is determined exactly by the random variable X, so Z would
depend on the random variables T and u as X = T + u, where T and u are
assumed to be independent random variables in the classical test theory
model. But once X is fixed at some value (i.e., once X is controlled), Z be-
comes completely determined and fixed, hence independent of anythingelse,
including u as well as T. ' - '

_This means that Z is correlated with u, but its partial correlation with u is
zero when X is controlled. Hence the partial correlation between u and Z
R.z.x, equals zero, which implies that the partial regression coefficient from
the regression of u on Z, Buzix, is also zero in the RD design. Therefore
E(Bz) = B - Bx(0) = B;, confirming algebraically that the treatment estimate
in the RD design is unbiased when the observed covariate is measured with
error. . ‘ :

Once treatment assignment is perfectly known, the coefficient of the
pretest covariate completely absorbs the bias due to measurement error in the
pretest. It can be shown (e.g., in Gujarati 1988, 417) that random measure-
ment error in a covariate causes that covariate (X) and the stochastic regres-
sion disturbance term to be correlated. This violates one of the crucial




Cappelleri et al. /RANDOM MEASUREMENT ERROR = 407

z;ssumptions in the classical linear regression model that no such correlation
is present. When this assumption is violated, the OLS estimator of X is both
biased and inconsistent (i.e., it remains biased even if the sample size
increases indefinitely).

Yet in the RD design once measurement error becomes identified and
controlled for by X or, more specifically, by the (slope) coefficient of X,
measurement error then becomes unconfounded with the coefficient of the
dichotomous treatment variable (Z) because this variable is merely two
subdivisions of an already controlled, fallibly measured covariate. In the
randomized experimental design the same bias attributed to measurement
error is fully “absorbed” or “captured” (in a sense) by the coefficient of X,
but this bias does not contaminate the treatment effect estimate because Z is
probabilistically or theoretically uncorrelated with X. In both RD and RE
designs, the slope coefficient of the pretest is attenuated by an amount equal
to the reliability coefficient. That is, if Bx is the true population slope
parameter and Bx is the sample slope estimate, then Bx = Bx(p) where p is the
reliability coefficient, Therefore, dividing ﬁx by p will glve an unbiased
estimate of the slope coefficient parameter.

An NEGD (observational) study, on the other hand, typically contains
both a significant correlation between Z and X and lacks knowledge of the
assignment rule that completely determines Z from X. This not only makes
the slope coefficient biased but also makes the treatment effect coefficient
biased. In essence, the correlation between pretest and the stochastic distur-
bance term “transmits” a bias to the treatment effect coefficient.

The above rationale can be shown pictorially, without loss of generality,
for the case of no real treatment effect. Also assume, to simplify matters, that
no extraneous factors (like measurement error in the posttest) can account
for the differences between a given person’s pre and post scores. Figure 4
shows what happens for NEGD and observational designs. In Figure 4, the
observations are uniformly scattered in one ellipse for the treatment group
and in the other ellipse for the control group. Line AB in Figure 4 shows the
true null regression line for NEGD and observational designs when there is
no measurement error in the pretest. When measurement error in the pretest
is introduced (along with the regression toward the mean that results),
however, an apparent treatment effect arises as evidenced by the fact that the
fitted regression lines CD and EF do not intersect.

Figure 5 shows what happens for RE and RD designs. First, consider the
RE design. In Figure 5, whose observations are uniformly scattered through
the ellipse, line AB depicts the true regression line in the absence of mea-
surement error. Although an attenuated regression slope inevitably surfaces
in the RE design with measurement error~as shown by line CD—it is
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Posttest

Pretest

Figure 4: Effects of Measurement Error In NEGD and Observationatl Designs
(null case)

generally known that measurement error will not bias the treatment effect
estimate in the RE design, because randomization spreads the measurement
error evenly over both groups, making the two groups share the same pretest
population mean (Cochran 1968).

Consider next the RD design, also shown in Figure S. It is in pnnclplc
identical to the RE design except that half of the data in each group is missing
(i.c., half of the data above and below the cutoff score), thereby making the
RD design reach the same conclusion as the RE design. In the null case
measurement, error in both RD and RE designs is adequately captured by the
single continuous regression line itself, implying no adverse effect on the null
treatment effect estimate (Trochim 1990a).

COMPUTER SIMULATIONS

CONSTRUCTING FOUR ANCOVA DESIGNS

Monte Carlo computer simulations are conducted with 1,000 repetitions
of 100 cases per repetition for four different ANCOVA design strategies: the

— . e —
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Figure 5: Effects of Measurement in RE and RD Designs (nul! case)

RD design with assignment into treatment groups based on true scores, the
RD design with assignment based on observed scores, the RE design, and
the NEGD. All four designs share about an equal number of cases in both
groups. This set of 1,000 repetitions is more extensive (and therefore more
closely mimicks the expected results) than does the work of Trochim (1984)
and Trochim and Davis (1986a, 1986b), who have investigated a similar set
of simulation models but with only 20 repetitions and 50 repetitions. Further-
more, unlike these previous simulation studies, this current simulation study
demonstrates the bias associated with the intercept and pretest regression
coefficients in RD and RE models and presents a oouplc of formulas to
correct for the bias.

In what follows, the notation “~ N (mean, vanance)” refers to a normally
distributed random variable with a known mean and variance. Moreover, V
denotes the variance operator and E denotes the expectation operator.

The setup of the simulation study takes the following arrangement:

* number of cases = 100
* number of runs = 1,000
* true pretest score, T ~ N (50, 25)
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* random measurement error, u ~ N(0, 9)
¢ observed pretest score, X= T + u

« known reliabllity coefficient, p = z::;’) -5 '(’;l:'(’l\'/) ot 25": 5= 78

true treatment effect = —8 points

binary treatment variable, Z; Z = 1 if in treatment group, Z = 0 if in control group
regression disturbance term, ¢ ~ N(0, 4)

simulated mode! for posttestis Y = T + -8(Z) + .

A description of the simulation specifications for group assignment for the
four design strategies follows.

Design RD —no error refers to the basic RD design that incorporates the
unrealistic selection procedure that allocates subjects to the two treatment
conditions on the basis of their true scores rather than their observed scores.
In practice, of course, this design is impossible because we never know the
true scores. All subjects with true scores at or above 50 (thc average value of
true scores) are placed into the treated group (Z = 1), and all subjects with
true scores below 50 are placed into the control group (Z = 0). Although not
a practical illustration, because measurement error is prevalent in all contin-
uous variables, this method of assignment is included here to simulate the
true situation in which there is no measurement error in the pretest (in
essence, X = T) and to serve as a baseline for comparison with the other three
designs, which contain measurement error in the pretest measure,

Design RD refers, as usual, to the basic RD design that assigns subjects
into treatment groups strictly on the basis of their fallibly measured observed
scores. The cutoff value of 50 is chosen on the observed measure: Everyone
at or above X = 50 (the mean of X) is assigned a Z value of 1; everyone below
50 is assigned a Z value of 0. This design is the main design of interest and
the one that Stanley and Robinson (1990a) contended should be biased
because of measurement error.

Design RE refers to the RE design that assigns subjects randomly across
the entire pretest range. The probability of assignment to either group is .50,
accomplished by generating an independently and identically distributed
standard normal variable. Cases with values at or above zero on the standard
nommal variable are automatically placed into the treatment group; otherwise,
cases are placed into the control group.

Designs RD —no error, RD, and RE have one very important feature in
common: They are modeled, by the nature of their designs, with a perfectly
known treatment assignment function.

Design NEGD, on the other hand, represents the nonequivalent group
design, whose unknown selection process cannot be perfectly modeled into
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the analysis. An NEGD is created in the simulation by assigning cases with
true scores at or above 50 to treatment and below 50 to control, and by using
the observed covariate (X) instead of the true covariate (T) as the pretest
regressor. For the purposc of simulating this particular design, the data
analyst knows only Y, X, and Z. He or she is unaware that a subject’s
(unknown) true score solely determines the selection process. This assign-
ment strategy can also be viewed as an RD design with assignment based on
true scores but with its regression analysis based on observed scores, known
as the fuzzy RD design (Trochim 1984). Conclusions drawn from this special
type of NEGD can be generalized to NEGDs broadly. Trochim and Davis
(19864, 1986b) provide a more general way to simulate NEGDs.

All four designs are analyzed in the regression model via the estimated
ANCOVA regression function ‘

Q-ﬁo*éxx+azz; ; [4]

where ¥ is the predicted value of Y from the OLS regression of Y on X and
Z, and the coefficient estimates (the ﬁs) are not necessarily the same across
designs. Although all four analysis use this same analytic model, they differ
in their assignment strategies, as discussed earlier.

SIMULATION RESULTS

By “bias” in the treatment effect estimate we mean it in the usual sense,
that is, E(Bz) » 8. In Monte Carlo simulations, it is common to consider an
estimate unbiased [E(Bz) = B.] if the average estimate (in our case averaged
over 1,000 samples, each containing a different set of 100 observations) lies
within 1.96 standard errors of the true population value it is attempting to
estimate. The sample value of interest is the average estimate, and we wish
to investigate how it deviates from the fixed parameter it is attempting to
estimate. The standard deviation of the average estimate is, of course, the
standard error of the mean, which in our simulation is the sample standard
deviation of 1,000 individual beta coefficient estimates divided by the square
root of 1,000. Here, if the actual parameter value falls within a 95% confi-
dence interval of the average estimate plus or minus 1.96 times the standard
error of the mean, then the average estimate is declared unbiased. _

Table 1 shows the simulation results for the four ANCOVA designs. For
this table, we denote the standard error (SE) of the mean intercept estimate
Po as SE(Po), of the mean slope estimate Bx as SE(Bx), and of the mean
treatment estimate 7 as SE(f;). The results from the tables illustrate at Jeast
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TABLE 1: Simulation Results for All Four Designs
(average results across 1,000 repetitions, 100 cases per run)

Mean Estimates and C
Standard Emors of - Design R
Mean Estimates No Error - Design RD  Design RE  Design NEGD
fo 025 13.161 13.182 22.998
SE(o) .098 136 .090 102
Bx 999 736 736 500
SE(x) .002 002 001 002
fiz ~7.983 -8.005 ~8.000 -4.004
SE(B2) 021 034 020 025

five important methodological principles. First, designs RD —no error, RD,
and RE — designs that model a perfectly known assignment rule —all give an
unbiased estimate of the true population treatment effect of —8 points. In
particular, design RD, the main design of interest, clearly yields an unbiased
(average) ﬁz value of —8.005 as evidenced by mere inspection or by the true
value of -8 falling within the 95% confidence interval -8.005 = 1.96(.034) =
(~7.938, -8.071). Using any correction factor, thercfore, would introduce a
bias.

Second, design RD — no error, which deals with the impractical cvent of
no measurement error, in addition elicits unbiased OLS estimates for the
intercept term [ﬁo =.025, SE(Bo) = .098] and the slope coefficient [Bx =.999,
SE(By) = .002). With the simulated posttest model being Y = T + -8(Z) +¢,
the population intercept term is 0 and the population coefficient for the pretest
is 1. Thus, when there is no pretest measurement error, all OLS estimates are,
as expected, unbiased. '

Third, sample intercept terms and slope coefficients for the other three
designs are in fact biased. However, we know from Goldberger (1972) and
Cappelleri (1990a) how to correct these biased OLS estimators in random-
ized and RD designs. Thus, when pretest measurement error exists, intercept
and slope coefficients in RD and RE designs are, as expected, biased, al-
though the treatment effect estimates are not.

Let the superscript “c” on an estimator represent an estimator that hasbeen
corrected for bias attributed to measurement error. For designs RD and RE
the corrected or adjusted intercept estimator is

B5 = Bo - ux(1 - p) : 5]

in which pix = py represents the population mean of X or, equivalently, of T,
under the assumption that X and u are normally distributed. For design RE
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A

f5 = 13.182 - S0(1 ~ .736) = ~.018

and for design RD

A

B5 = 13.161 - 50(1 - .736) = —.039,

which are not biased when corrected in this manner.

With both ux and p known constants, the corrected or adjusted standard
error for Py is the same as the standard error for ﬁo of .136 given for design
RD and of .090 given for design RE. Therefore, the sample intercept terms
in designs RD and RE are now unbiased as their respective confidence
intervals include 0. '

Designs RD and RE should have an estimated slope coefficient near 1 in
the absence of measurement error. In both these designs the estimated slope
coefficient is .736, differing from 1 by more than chance. The reliability
coefficient of .736 accounts fully for the slope attenuation. For designs RD
and RE the corrected or adjusted slope estimator is simply

ﬁa-ﬁp!. (6}

Both designs RD and RE have a corrected slope estimate of ﬁ§=.736l
.736 = 1, which in this simulation is the value it should equal in the absence
of slope attenuation. Because this revised estimate exactly equals its corre-
sponding parameter value, we now clearly see no bias in the pretest coeffi-

cient. With p taken as a known population constant, the corrected or adjusted
standard error for fx for both designs is

SE(BS) - se[%’i]

_SE@x) 7]

p

For design RD, SE(B%) = .002/.736 = .002; for design RE, SE(B}) = .001/
.736 = .001. Thus slope cocfficients are unbiased when corrected.

Notice that the simulated design NEGD clearly yields not only a biased
estimate of the intercept term and slope coefficient but also a biased estimate
of the treatment effect. Although not done so here, revised, unbiased OLS
estimates for design NEGD can be obtained from the adjustment formulas

provided by Stanley and Robinson (1990a), which are correct for the NEGD
design.
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Fourth, although the RE and RD designs give virtually identical OLS
estimates, the standard errors of those estimates are lower in design RE than
in design RD. For instance, the average standard error of the 1,000 individual
treatment estimates in design RD is higher than that in design RE by a factor
of about 1.7:

SE(f)uw _ 034V 000)
SE(Bze  020(VE000)

- 1.075
632

= 1.7.

This corroborates the work done by Goldberger (1972) and Cappelleri
(1990b) on the relative efficicncy and statistical power advantages of REover
RD designs. Thus a drawback of the RD design is that it is less likely to show
a significant program effect, when one exists, than is the RE design.

Finally, although the treatment effect point estimate in designs RD—no
error, RD, and RE is not susceptible to measurement error, a fallibly measured
covariate in the ANCOVA model implies more variability in the treatment
effect estimate. This is expected and can be seen in the simulation by noting
that the average standard error of the 1,000 treatment effect estimates in
design RD (1.075) is noticeably higher than that in design RD—no error
(.664 = .021v1,000).

A CAVEAT ABOUT THIS SIMULATION STUDY

Caution should be undertaken when doing RD simulation studies of this
type. The fitted regression model should take the same functional form as the
simulated (generated) theoretical model. Suppose, for instance, that true
scores followed a nonnormal distribution (like a uniform distribution) and
measurement error in observed scores continued to follow a norma! distribu-
tion, with a mean of zero and a given variance. Also assume that the simulated
model is Y =T + B,Z + ¢, where B, is the program effect size. Mecasurement
error in X, which equals T + u, will then induce a nonlincar trend in the
observed X-Y functional form as the addition of a nonnormal T and normal
u makes Y and X have a nonlinear relationship (Cochran 1970). Trochim,
Cappelleri, and Reichardt (forthcoming) provide a detailed discussion on
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what happens when the fitted RD model has a different form than the
simulated RD model.

Consequently, if an RD design were simulated in this manner, a linear
regression of Y on X and Z may result in a bias treatment estimate in the RD
design. But this is not due to measurement error in the pretest per se. Itis due
to incorrectly specifying a linear regression function between X and Y when,

in fact, a nonlinear relationship exists between them. (See the discussion in

Cook and Campbell 1979, 140-41, for further insight.) This is not to say that
the pre-post distribution needs to be bivariate normal for the RD design to
yield an unbiased treatment estimate, because even if X is normally distrib-
uted by virtue of T and u being normally distributed, Y is a nonnormal
variable when f, does not equal zero.

It is imperative when doing RD simulations of this type to create X by
adding a normally distributed u variable to normally distributed T variable,
because in this case both the fitted and simulated models assume a linear
pretest-posttest functional relationship. As a means toward correctly model-
ing the X-Y relationship in practice, whether or not the assignment variable
or the measurement error variable is normally distributed, Rubin (1977)
suggested using strong a priori information about the functional form, Boruch
(1978) suggested using a “dry run” approach, Mohr (1988) suggested using
double pretests, and Trochim (1984) suggested coupling the RD design with
the RE design. Perhaps, if feasible, implementing each of these suggestions
for a single study would be the most favorable strategy in carefully specifying
the RD model. In practice, an appropriate transformation on the pretest or
posttest or both should be considered if a linear fit is deemed inadequate.

Because the RE design propitiously has its treatment group regression
lines spread over the entire pretest continuum, the RE design is not as
sensitive to model misspecification as its RD counterpart. Although the
standard error of its treatment estimate may become inflated, the RE design
may still yicld an unbiased estimate of treatment effect when a straight line
is fit to a nonlinear X-Y relationship.

In the simulation of design RD, the mean of the normally distributed
pretest is chosen as the cutoff value, as well as the point at which to estimate
the treatment effect. No caveat is warranted here, however. The cutoff value
can be chosen at a point other than at the mean of the normally distributed
pretest variable for the simulation to shown an unbiased treatment effect. The
situation is more complex when an interaction term is included (Trochim,
Cappelleri, and Reichardt forthcoming).
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CONCLUSION

When classificd as an NEGD (Cook and Campbell 1979), the RD design
may at first glance be taken as just another NEGD and hence susceptible to
measurement error problems that face NEGDs. But NEGDs can be broadly
classified by whether or not the selection process is controlled. This distinc-
tion is important for determining the influence that random measurement
error in the pretest has on the treatment effect estimate in the linear model in
general and in the analysis of covariance model in particular. Although the
RD design does deliberately create two nonequivalent groups on the pretest
measure, it is not a typical NEGD because assignment is perfectly controlied.
Because its assignment mechanism to experimental and control groups is
entirely based on a known set of observed scores and nothing else, its
treatment effect estimate is unbiased and isolated from the contamination
caused by measurement error in the pretest covariate. And the same conclu-
sions hold for randomized experiments. The unique and beneficial design
structure of RD designs is not employed by NEGDs when assignment is not
controlled. Their treatment effect estimates, along with their slope and
intercept estimates, are prone to bias.

The basic point is that for the process being measured —the assignment
process — there is no measurement error of any kind in a properly imple-
mented RD design. The pretest (containing whatever type of measurement
error for measuring some underlying construct) is notreally fallibly measured
for the purpose of creating and analyzing the RD design. The fact that there
is random measurement error for the underlying construct, which is contained
in the observed pretest, is besides the point for the assignment process.
Assignment is literally done by the pretest score, not by the underlying con-
struct (whatever that is). So, in principle, the treatment effect is estimated in
an unbiased fashion. Any possible bias that does arise from measurement
error is completely absorbed by the regression coefficient of the covariate
itself. As Trochim, Cappelleri, and Reichardt (forthcoming) demonstrate, this
same line reasoning holds when a prctcst-treatmcnt interaction is included.

The premise taken in this article is in full agreement with those authors
who have contributed methodological advances to the RD design. These
authors include, but are not restricted to, Barnow (1972), Goldberger (1972),
Cain (1975), Rubin (1977), Cook and Campbell (1979), Barnow, Cain, and
Goldberger (1980), Judd and Kenny (1981), Berk and Rauma (1983),

Trochim (1984, 1990a, 1990b), Mohr (1988), and now Stanley and Robinson
(1990b).
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