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Foreword

DONALD T. CAMPBELL
Lehigh University
It is a great pleasure to be allowed to introduce Bill Trochim’s

book. It is the first complete (to say nothing of book-length)
presentation of the regression-discontinuity quasi-experimental

“design. Bill and the Sage editors have invited me to use this

occasion to present an anecdotal history of the development of
the method in Evanston, Illinois. (No doubt it has been
independently hit upon several times. I will report later on the
cases which we know about.)

Some background: In the period 1958-1968, the National
Merit Scholarship Corporation, headquartered in Evanston,
supported an impressive research commitment under the direc-
tion of John M. Stalnaker, with scholars such as Donald L.
Thistlethwaite, Alexander Astin, Robert Nichols, and John L.

"Holland on the staff at various times. This group, and a similar

group at the Association of American Medical Colleges (Helen
H. Gee and Edwin B. Hutchins, among others), combined with
the faculty of Northwestern University to produce a truly
outstanding applied social research community with a special
focus on quasi-experimental designs. For example, the cross-
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lagged panel correlation technique also grew out of this environ-
ment.

On some winter day in 1958, I met with Donald Thistlethwaite
and others from National Merit in the Faculty Lounge, 304
Kresge Centennial Hall, Northwestern University, whose win-
dows at the time looked out right over Lake Michigan. Our
agenda was to discuss how to measure the career effects of
receiving a special new Merit Scholarship designated for minority
students, under the direction of Hugh Lane. Whereas the regular
Merit Scholarships went to students so promising and well
supported that the Merit award could do little to augment their
level of eventual achievement, these minority awards were
expected to make profound career changes in many cases.

Our discussion quickly rejected any broad spectrum use of
random assignment, even for 'a small experimental sample. We
spent most of the day trying to convince the program administra-
tors to employ a “tie-breaking™ randomization: that is, for those
applicants whose scores or ranks were on the borderline between
award and no award, one would define a class interval of
measurement, within which all who fell would be designated as
tied in eligibility, with more numerous such cases than there were
awards to cover. Among these, one would break the ties by
random assignment. For this narrow band of eligibility, one
would have a random-assignment experiment.

But by the end of the afternoon, Don Thistlethwaite and 1 had
become convinced that if awards were made entirely on the basis
of a quantified eligibility score or a complete ranking of a
substantial pool of applicants in a range that included borderline
and less eligible cases, and if one had outcome scores for this full
range, one should be able to extrapolate from above and below
the cutting point to what a tie-breaking random-assignment
experiment would have shown. This double extrapolation pro-
duces the ‘‘regression-discontinuity” design.

The hypothetical tie-breaking experiment has been both the
expository and interpretative key in all of the presentations of the
method in which I have participated (Thistlethwaite & Campbell,
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1960; Campbell & Stanley, 1963; Campbell, 1969a, 1976; Riecken
et al., 1974; Cook & Campbell, 1976, 1979), leading me to reject
effects such as change of slope when not accompanied by a
change of cutting-point intercept. If a tie-breaking randomized
assignment would not have shown the effect, I am unwilling to
credit a causal inference based upon an other-than-intercept
discontinuity.

The idea of randomization at the margin (tie-breaking) can be
regarded as a special case of Boruch’s (1975b) “Experiments
Nested Within Quasi-Experiments,” that is, using multiple
designs that are put together to achieve both greater statistical
power and more methodologically independent. cross-validation.
The statistical properties of estimates that we get out of coupling
designs can be better than those we get out of single approach
designs. To put this more concretely, even had a tie-breaking
randomization been permitted, a supplementary regression-dis-
continuity analysis would also have been desirable. In addition, a
tie-breaking randomization no matter how few its cases will
always add inferential strength to a regression-discontinuity
analysis. ‘

It turned out that in its scholarship awards of any type,
National Merit could not implement either the tie-breaking
randomization or the regression-discontinuity design due to its
commitment to thé many funding groups it coordinated, each of
which designated a panel to make the final decisions on the few
scholarships it was funding. These panels looked over the
quantitative and qualitative evidence and produced a 3-category
decision (award, alternates, and unconditional rejectees) with no
metricizing within categories. Had they been asked to first rank-
order the entire pool, and then to use these ranks to decide
awards and priority order of alternates, then a subsequent
regression-discontinuity analysis using ranks above and below the
cutting point would have been possible, but the administrative
staff judged this to be too demanding. Post hoc ranking within
categories (which might have been done later by a research staff)
would have produced a discontinuity in the quality of measure-
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ment at each category boundary, undermining the fundamental
assumption of measurement homogeneity within and across
cutting points.

For a nonmonetary commendation, the Certificate of Merit,
the requisites were available in National Merit procedures and
records: award based upon a sharp cutting point on a quantita-
tive measure of eligibility, a record of the eligibility scores of
persons above and below the cutting point, and follow-up data
for all, appropriate to possible effects of the award. Donald
Thistlethwaite had already used these data in a more traditional
ex post facto impact study. He did regression-discontinuity
reanalysis that we published (Thistlethwaite & Campbell, 1960),
illustrating its clear superiority over the ex post facto method for
causal inference.

My next Northwestern colleague in work on the method was
Joyce A. Sween, whose 1971 Ph.D. dissertation *“The Experimen-
tal Regression Design: An Inquiry into the Feasibility of Non
Random Treatment Allocation” (see also Sween, 1977), probed
and expanded the method by extensive computer simulation,
with special attention to appropriate tests of significance once
one has abandoned the usually inappropriate assumption of
linear regression. She declared that the regression-discontinuity
design produced a true rather than quasi-experiment, in agree-
ment with later publications by Goldberger (1972), Cronbach,
Regosa, Floden, and Price (1977), and Reichardt (1979) who also
argue that the magic of randomization is that it enables one to
model accurately the exposure to treatment, and that other
explicit assignment rules can achieve this same result. (While 1
admire the brilliance of this perspective, the choosing of an
appropriate estimate of the regression lines involves such great
difficulties and strong assumptions that I still would emphasize
the quasi-ness.)

Sween explored the use of higher-order polynomials to achieve
curvilinear regression, and ended up recommending essentially
the same procedures Trochim presents in this volume. In the

normal curve-fitting strategy one uses the lowest order curve not
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statistically significantly demonstrated to be too simple. This
results in a parsimonious bias toward underfitting. For the
double-extrapolation t-test analysis developed by Sween, under-
fitting (e.g., using a linear model where the true form is
quadratic) can lead to pseudo-effects, whereas the reverse error,
overfitting, or using too high a polynomial, should not. Thus
Sween recommended starting with a cubic or higher order model
and working down. '

Two anecdotes illustrate the sensitivity of the analysis to slight
degrees of curvilinearity. For a long time, the most extensive
presentation of the design was in my “Reforms as Experiments,”
which first appeared in the American Psychologist in 1969. In that
first presentation there was a profoundly mistaken Footnote 8,
deleted in all subsequent presentations (e.g., Streuning & Brewer,
1983). Within a week or so of its appearance, both William
Kruskal and Harry Roberts of the University of Chicago
Department of Statistics had independently contacted me to tell
me 1 was wrong. There ensued a series of meetings in which
Kruskal, Roberts, James Landwehr, Myron Straf, and others
from the University of Chicago met with Joyce Sween, Edward
Kepka, Donald Morrison, and me from Northwestern, workiﬁg
to discover the source of the problem. In the end, this turned out
to be a subtle mistake in our simulation. Since I never got around
to publishing the planned errata in the American Psychologist, 1
will take space to do that now.

(The exposition will be clearer if I use the very same
illustrations employed in that article. For convenience, I will
keep the captions and figure numbers the same, even though I
have always regretted the labels of the abscissa and ordinate, a
regret which increased with each of the many reprintings of that
article. Using the terms “pretest” and “posttest,” instead of
“eligibility score” as I should have, encouraged the misunder-
standing that the design was only appropriate where the same or
highly comparable measures were used for both eligibility and
outcome. Instead, while this is a limitation for many quasi-
experimental designs, including the two most frequently usable,
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the interrupted time series and the pretest-posttest nonrandom-
ized comparison group design, it is not at all a limitation on the
regression—discontinuity design. Indeed, in the original Thistleth-
waite and Campbell (1960) paper, the eligibility measure was an
achievement test score, and one outcome measure was the
distance from the home of the university attended.)

Figure 14 and 15 of Campbell (1969) show simulated regres-
sion-discontinuity studies, with no true effect (Figure 14) and
with a true effect of some two points (Figure 15). When Joyce
Sween and I extended no-effect runs such as Figure 14 to 1000 or
more cases, we regularly obtained a significant pseudo-effects in
the direction of a beneficial impact of a treatment given to those
with the higher eligibility scores. Footnote 8 was a misguided
effort to explain this apparent bias.

The correct explanation was as follows: The simulation
involved 20 discrete whole-unit true scores (ranging from O to
20). To these true scores were added errors of a “continuous”
nature, that is, normal random numbers with five significant
figures. Separate independent errors were added to the true
scores to achieve the eligibility and the outcome scores. Thus all
of the obtained scores lower than the lowest true score of zero,
and all scores higher than the highest true score of 20, were due
purely to error, and hence had a perfectly horizontal regression
line, adding a slight curvilinearity, which when fitted with a
straight line tilted the two regression lines apart at the cutting
point. All of this can be now seen if one looks carefully at Figure
14. Needless to say, in Sween’s dissertation, done later, “‘continu-
ous” normal true scores were employed, and this subtle source of
curvilinearity avoided in the intended linear cases.

Here is another example of the subtle effects of overlooking
slight degrees of curvilinearity. In the Cook and Campbell (1976)
chapter in Dunnette’s Handbook, Seaver and Quarton’s (1976)
study of the impact of being on the Dean’s List on subsequent
grade point average was. used to illustrate the regression-
discontinuity design. By the time this material was revised as a
separate publication (Cook & Campbell, 1979), Seaver and
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Figure 14 Regression-Discontinuity Design: No Effect

Quarton’s data had been reanalyzed by Sween allowing for a
curvilinear fit, totally removing all indications of any effect.
Sween’s and my work as reflected in ‘“Reforms as Experi-
ments” (1969) and her dissertation (1971) were supported by the
National Science Foundation continuation grant GS1309X, initi-
ated in September, 1966. Since then I have had continuous NSF
support for work on quasi-experimental methodology. For the
second S-year continuation grant, beginning in 1971, Robert F.
Boruch was coprincipal investigator, and with his arrival at
Northwestern University, new phases of exploration of the
regression-discontinuity design began. Boruch and 1 were both
involved in the Social Science Research Council committee that
produced Riecken et al.’s Social Experimentation: A Method for
Planning and Evaluating Social Intervention (1974). While that
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Figure 15 R8gression-Discontinuity Design: Genuine Effect

volume focused upon randomized assignment to treatment, its
one chapter on quasi-experimental designs gave regression-
discontinuity pride of place. The most dramatic graph in the
whole book for illustrating results from a social program
(medicare made available only to the lowest income group) can
be interpreted as a regression-discontipuity analysis, although we
did not do so in the text. I refer to Figure 4.19, p. 115, data
provided by William Lohr of the National Center for Health
Services Research. ,

The economist Arthur Goldberger consulted with the commit-
tee, and through this we became aware of his independent
discovery of the method (1972a, 1972b; see also Cain, 1975), in
papers focused on the problem of error in variables. His
conclusion was that bias (in my language ‘“‘regression artifacts”
or “packaging underadjusted selection bias as treatment effects”)
occurred when assignment to treatment was based on a latent
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true score, but could be avoided by assignment on the basis of a
known variable, even if fallible, as well as by random assignment
to treatment. The illustrations were based on linear models and
covariance analysis, and were the same as the linear regression-
discontinuity analysis.

The independent rediscovery of the central idea of the
regression-discontinuity design also occurred in the ‘“special
regression” model for compensatory education evaluation pres-
ented by Tallmadge and Horst (1976) and Tallmadge and Wood
(1978). Although 1 was critical of several aspects of their
variation on the design, such as the estimate of treatment effect at
the treatment group pretest mean rather than cutoff and the
absence of any attempt to address curvilinear relationships, the
frequent use of their version in Title I compensatory education
evaluations has provided us with the richest data base of
applications yet produced much of which Trochim has reana-
lyzed according to our tradition. '

The addition of Boruch at the faculty level and Charles
Reichardt as a graduate student greatly augmented our Psycholo-
gy Department group’s formal statistical training. Meyer Dwass

and Jerome Sacks, statisticians in Northwestern’s Mathematics -

Department, had already been giving us occasional advice, but
the presence of Boruch and Reichardt greatly increased the level
of this interaction. Jerome Sacks decided that the problem of
appropriate estimates of effects and tests of significance had a
fundamental enough challenge to merit his professional attention.
There emerged a seven-year period of close collaboration, most of
it devoted to this problem.

The ultra-statistics they brought to the task are discontinuous
with the statistical concepts social science methodologists are
exposed to, and certainly beyond my mastery, as the least trained
of our team. But I will make an effort to indicate some of the
issues that motivated our high morale collective search. First of
all, curve fitting by composite higher-order polynomials is a very
unsatisfactory procedure. Bill Trochim, who joined our team for
the last several years, introduced a procedure I recommend to
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others as a routine aid to inference. He plotted extrapolations of
the resultant curve beyond the data it was designed to fit. These
extensions were almost always wildly incredible. Since regres-
sion-discontinuity analysis, more than other uses of curve fitting,
depends upon extrapolation, this is at least a significant concep-
tual weakness. (Sween emphasizes the minimal extrapolation
involved and doubts that any practical liability ensues.)
Second, data points far removed from the cutting point
contribute to the determination of the curve fully as much as do
data points adjacent to the cutting point, and hence to the
extrapolation generating the results of a hypothetical tie-breaking
experiment. This weakness is shown in the “Footnote 8" episode
above. On many grounds, one would prefer to have the data
nearer the cutting point weighted more heavily than remote
values in the determination of the curves and extrapolations. In
the somewhat analogous problem in the interrupted time-series
quasi-experimental design, the methods of Box and Tiao (1979,
1975) weight periods adjacent to the time of impact much more
heavily than data from remote periods in generating the predict-
ed values as to what would have been observed in the absence of
the impact. While I have never understood how their differential
weighting parameters were derived, they are consistent with
assuming a positively proximally autocorrelated true score,
where time points closer in time are more similar. I cannot now
remember whether or not we ever tried out the Box-Tiao transfer
function approach as though it were appropriate to regression-
discontinuity data. In vision research, “spatial” autocorrelation
concepts are now being used, and perhaps they could be
rationalized for the regression-discontinuity setting on the basis
of assuming a proximally autocorrelated structure in attribute
space. This would be consistent with a presupposition of
induction which I believe most of us share: In place of the
assumption that nature is orderly, we assume that nature is
“sticky” or “viscous” and that more adjacent regions in space,
time, and attribute values are more similar than are remote ones,
~and can be generalized to with greater confidence (Campbell,
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1966; Raser, Campbell, & Chadwick, 1970, pp. 197-199). As an
illustration of what I mean a little closer to the present setting,
suppose one did an analysis of variance experiment using as one
of its classification criteria three levels of our eligibility dimen-
sion. We would expect disordinal interactions involving this
dimension to occur more frequently if the three levels were far
apart than if they were chosen from adjacent values.

I interrupt here to provide more details on the working
context. This introductory essay is intended not only as a history
of the ideas, not only as a partial agenda of unfinished problems,
but also as evidence for a sociology and psychology of inter-
disciplinary collaboration. The period of collaboration that I
am about to describe I regard as ideal, even though it did
not promptly produce the practical new methods we hoped for.
Myer Dwass’s organization in 1972 of a Center for Statistics
and Probability at Northwestern University created a faculty
community in which Bob Boruch and I were invited to make a
series of presen tations on unsolved problems in tests of
significance for quasi- experimental designs. In the summer of
1973 and for two following summers, Clifford Spiegelman, a
Ph.D. candidate in mathematical statistics under Sacks and
Dwass, was employed by our NSF Grant. He spent most of his
first summer going over Joyce Sween’s Ph.D. dissertation,
arguing vigorously with her (by then at nearby DePaul) and the
rest of us about it. While in the end he approved of her
procedures, it was a very time-consuming process, primarily

‘because of the differences in statistical traditions employed. This

experience greatly facilitated future communication. Out of this
grew an ad hoc seminar on the problem, led by Jerome Sacks and
another math department faculty member, Rose Ray. Such ad
hoc seminars characterized our summertime interaction for a
number of years. Sacks and Ray devoted great effort to the
regression- discontinuity problem, their efforts supported by their
own NSF Grants—only their students (Spiegelman and later
George Knafl) and them only during summers were supported by
the Campbell and Boruch NSF Grant. As a general strategy, Ido
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strongly recommend such summer cross-disciplinary employ-
ment. A one-summer commitment permits cross-disciplinary
collaboration on a tentative basis. These ‘‘shared” graduate
students greatly facilitate faculty communication.

Sacks, with Rose Ray for the first year or so, took a general
line of approach that I can only crudely characterize. In
continuity with Sween’s and my approach, the focus was on the
sharp cutting point model, and the double-extrapolation tech-
nique—that is, extrapolating an estimated value at the cutting
point from points below the cutting point, and comparing this
with a similar independent estimate based upon the observations
above the cutting point. All of the several approaches Sacks and
Ray explored had the feature that observations nearer the cutting
point (nearer the to-be-predicted value) were weighted more
heavily than more remote observations. They also had the
characteristic that no specific curve had to be estimated or
assumed. (It helped me feel that I had a glimmer of their
approaches to note that in extrapolating just one unit beyond the
observed data, one will probably get very similar predicted values
no matter what curve is employed.) They began first with linear
and higher order splines, and then moved to still more complex
techniques. Sacks’s second approach (Sacks & Ylvisaker, 1978)
was to estimate something like a mean prediction from all
possible curves within a large class, without ever specifying any
one of the curves. While the method is classified as “non-
parametric,” it produces a predicted value in the metric of the
original measures. While costly in degrees of freedom or power,
in many situations of application, there would be sufficient
numbers of observations so that this cost could be met. George
Knafl worked for two summers developing a computer program
based upon this analysis. Again and again, computer simulations
revealed flaws requiring fundamental changes in the model.
Knafl’s “Implementing Approximately Linear Models” (1978)
reports on this stage.

In 1978, Sacks moved to Rutgers University for a two and a
half years. In 1979, I moved to Syracuse University, and our
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close collaboration was interrupted. A comment in my progress
report of August 31, 1978, has a misleading note of finality: “We
have recognized from the very beginning that nothing useful
might come of this approach, but have felt it very important to
take advantage of the opportunity to get such advanced mathe-
matical-statistical thinking turned to our tough applied social
science problems.” The importance of this exploration I want to
heartily reassert from the perspective of 1984, but the note of
finality was premature. With Sacks back at Northwestern and
Knafl at nearby DePaul, they now have a workable program
which can estimate the difference between the two regressions at
the cutting'point, provide a test of significance, and compare the
slopes on either side of the cutting point. The meth.od a:nd
program have been successfully applied to an engineering
experiment (with the help of Spiegelman and Ylvisaker), and has
been tried on some Educational Testing Service data sets. (See
also Sacks, Knafl, & Ylvisaker, 1982a, 1982b.)

The Sacks, Ray, Ylvisaker, and Knafl approaches are only half
of the story of this interdisciplinary collaboration. Cliffor.d
Spiegelman explored two still different approaches, devoting 'hlS
Ph.D. dissertation to one of them, and continuing these develop-
ments subsequently (Spiegelman, 1976, 1977, 1979a, 1979b).
Trochim has used his preferred approach in research on compen-
satory education (1980, 1982; Trochim & Spiegelman, 19.80) and
expounds it in this volume in his section on “The Analysis ?f the
Fuzzy Regression-Discontinuity Design.” Almost immediately
Spiegelman abandoned dependence upon the fact of assignment-
by-known-rule-or-measure, characterizing the *“sharp” or “true”
regression-discontinuity analysis, and his methods beczfme a
general procedure for assignment by latent unmeasured var?ables,
purporting to avoid selection bias (regression artifacts) in the
pretest-posttest nonequivalent control group design (Campbell &
Stanley, 1963; Cook & Campbell, 1979), as well as in the “fuzzy”
regression-discontinuity setting. '

Our Northwestern Psychology Department group was simul-
taneously active in work on the method all through this period.
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Bob Boruch, in addition to being our major participant in the
recurrent series of ad hoc meetings with Dwass, Sacks, and their
students, was active in both methodological developments and
applications (Boruch, 1973, 1974, 1975a, 1975c, 1978). In 1973,
Boruch and James S. Degracie, a statistician and Director of
Evaluation for the Mesa Arizona School District,‘ began collabo-
ration or field tests of the design in eleven schools. The context
was Title I reading programs in which children were supposed to
be assigned to programs on the basis of pretest scores. Their
“findings on first, third, and fifth graders anticipated some of the
problems in application of the design during the late 1970s:
programs are not delivered uniformly (some children spend only
a few weeks in a “nominally” year-long program); children are
assigned to special services despite high scores on pretests; and
difficulty in fitting curves to the R data due to floor and ceiling
effects (Boruch & DeGracie, 1975, 1977; DeGracie & Boruch,
1977).

Especially important was Boruch’s 1973 unpublished paper
“Regression-Discontinuity Design Revisited,” which recom-
mended the comparison of a single overall regression model with
the two separate regressions above and below the cutting point.
This paper became the “in-house” reference on statistical analy-
sis of the regression-discontinuity design, and provides the
underlying model that Trochim developes in this volume.

Boruch was also the director of Trochim’s dissertation, and
through the heroic Holtzman project (Boruch et al, 1981)
provided much of Trochim’s funding, and, more important,
access to those real-world data, available as a part of that
enormous restudy of educational program evaluations. Develop-
ing such opportunities is no mean task, and they generally go
unrecognized. The data themselves were available because of the
efforts of John Evans and others at the U.S. Department of
Education to incorporate higher scientific standards into federal
regulations governing the evaluation of federally supported
compensatory education programs.
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Most underreported is the important role of Charles S.
Reichardt in our ad hoc seminars and in guiding my own
thinking. His Chapter 4 in Cook & Campbell (1979) on “The
Statistical Analysis of Data from Nonequivalent Group Designs”
is the best published exemplar of his influence, and includes an
extension to the analysis of regression- discontinuity designs. For
my third NSF five-year Continuation Grant (BNS76-23920,
initiated January 1, 1977), he became my de facto codirector, my
main statistical superego and intermediary for the continuing
explorations in the interrupted time-series design, the cross-
lagged panel correlation, the cross-lagged time series, and the
regression-discontinuity design. Regarding the latter, I believe it
will be helpful to future investigators to give a brief report on our
explorations of the “fuzzy” case, joined at an early stage by
Trochim, but unreported by him in this volume. To make these
intelligible, I will start back again with the earlier presentations.

The concept of a “fuzzy” alternative to the regression-
discontinuity design was born on the same day in 1958 as the
“sharp” or “true” design. The National Merit decision panels
were supplied with quantified examination data and quantified
school grades, integrated into a single composite eligibility score.
Had the panels been lazy, they could have merely ratified the
division into winners, alternates, and also-rans that these scores
dictated. Instead, while they made decisions highly related to
these scores, they added unquantified evidence such as letters of
recommendation and interviews by some panel member with
each of the finalists. This evidence was used to change the
rankings provided by the quantitative measures in some cases.
Were one to have plotted the data organized by the quantified
decision scores and the outcome measures, the outcome would be
more or less as shown in either Figure 16 or 17 of “Reforms as
Experiments” (1969). Figure 16 was based upon a no-effect
simulation.

The presence in some cases of the award has made no effect on
the relationship between the eligibility score and the outcome
measure. This can be seen by comparing the envelope of the
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Figure 16 Regression-Discontinuity Design: Fuzzy Cutting Point, Pseudo Treat-
ment Effect Only

scatter diagram with that of Figure 14 shown above. Yet in
Figure 16, the regression line for the award recipients lies
significantly higher than that for the nonrecipients. This signifi-
cant effect is due to underadjusted selection biases, is a “regres-
sion artifact,” a pseudo-effect if misinterpreted as an effect of the
award. My major emphasis then, and now, is that almost all
modes of analyses of “fuzzy” regression-discontinuity data (with
the possible exception of those of Spiegelman, Trochim; Barnow,
Cain, & Goldberger, 1980) will produce this artifact, this
“packaging of underadjusted selection differences as though they
were treatment effects.” This effect follows if some of the rank
reversals made by the decision panel are “valid,” either through
picking up some current symptom of promise reflected in the
later outcome but not present in the eligibility score, or more
generally and less easily comprehended, by tapping the same
factor or factors as did the quantitative decision score, but
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Figure 17 Regression-Discontinuity Design: Fuzzy Cutting Point, with Real Treat-
ment plus Pseudo Treatment Effects

through a partially different route, partially independent of the
error component in the eligibility score. This need not at all
imply that the award panel’s decisions were more valid than the
quantified eligibility score that the staff prepared. They could
have been substantially less valid, considered as one single metric
compared with another, and this regression artifact pseudo-
impact would still occur if the large error component in the
fallible award decision did not include all of the error of the
eligibility score with which they had been provided. This being
so, then for a given eligibility score, the award winners with that
score would average higher than the nonwinners on the latent
true score, and hence higher on the outcome score for that
reason, even in the absence of any genuine award effect.



32 RESEARCH DESIGN FOR PROGRAM EVALUATION

It will make these conditions and assumptions clearer to
specify two alternative models for simulation of the fuzzy

regression-discontinuity design.

Eligibility score

Outcome measure

Award, 1 if award, O if no award . o
Impact of award (zero in Figures 14 and 16, 2 in Fig-
ures 15

and 17)

Error component (in Figures 14-17, a normal random
number)

T = Latent ability *“True Score” (in Figures 14-17, a whole
number between O and 20, selected at random, in later
simulations, a normal random number multiplied by a

constant.)

Let

—~>Oom
S 1 T

)
N

In these simulations, E and O are measures of parallel
structure, sharing for each individual the same true score, but

with independent error.
E=T+ ¢
O=T+ e+ 1
For the Sharp case, as in Figure 14,
A=1ifE<I10, 0if E> 10

For the fuzzy case of Figures 16 and 17, A* is a third variable
constructed is paralled with E and O, then dichotomized,

A* =T + e,

A= 1if A* <10, 0if A* > 10

For Figures 15 and 17, the 1, the impact of the aw?rd, = 2.
While I believe that the case of Figure 16 is the ubiquitous one,
and the one appropriate for the National Merit award process, |
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feel the need to make explicit another possibility: It could have
been that, merely to demonstrate their authority, the award panel
deviated from the quantitative scores available in a purely
haphazard, irrelevant way, adding error to the Eligibility score
by an essentially random process, using no independent channels
to the True Score. In such a case, the formula for the award
would have been

A* E + Ca

ie, A* =T + eg + e,

A=1if A* <10, 0 if A* > 10

In this event, for the null case of Figure 16, the regression lines
for the awardees would have been the same as for the nonawar-
dees. The whole scatter diagram envelope relating E to O would
not have changed had this been the case, for Figures 16 and 17,
but the regression lines would have. If one could be sure that the
awards were based on a T + eg + €, basis rather than a T + ¢,
basis, then an ordinary covariance analysis would be appropriate
in the “fuzzy” case too. (Most of the complications one would
like to add to make the assignment processes more like reality,
and Outcome measures factorially complex in ways not exactly
paralleled in the Eligibility measure, will have implications
making no-impact outcomes look like Figure 16.)

Reichardt, Trochim, and I initiated explorations of possible
analyses of the fuzzy case seeking to find a way of distinguishing
between null cases such as Figure 16 and true-effect cases such as
Figure 17, within the tradition of higher-order polynomial curve
fitting. These explorations are reported in a 1979 report of 35
pages, actually written by Trochim (Campbell, Reichardt &
Trochim, 1979), available from Trochim or me. I would like to
convey to future explorers in these areas the nature of our attack
and its problems.

Our first attack was in imitation of the old experimental
statistician’s rule of thumb when not all of the experimental
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group receive the treatment, and some of the controls get it on
their own: “Analyze 'em as you randomize ’em.” A conservative
test, because the impact estimate is diluted by the untreated and
the overtreated, but one unlikely to produce pseudo-effects. Our
version of this we called a “‘pseudo-sharp” analysis. With Figures
16 and 17 in front of one (assuming, however, better simulations
involving a continuous true score, as per my earlier discussion of
Footnote 8 [1969]), assume a pseudo-sharp cutoff point in the
middle of the fuzzy transition region (the value 10 will do) and
analyze as though all cases to the right received awards, all to the
left did not, assuming linearity. Figure 16 will produce a no-effect
outcome as did Figure 14. Figure 17, we thought, would show
some effect, underestimated because of the misclassified cases.
This degree of underestimation might be estimated and corrected
for, if one assumed that the award had a constant effect
regardless of eligibility-score level, since one knows how many
have been misclassified for each eligibility score. Two considera-
tions lead to the rejection of this approach. First, curvilinear
fitting eliminates the effect in Figure 17, and we have many
reasons to insist on rejecting a linear fit in most settings. (Floor
effects and ceiling effects, differentially present in eligibility and
outcome, are among them.) Second, in a simulation involving
larger error (or unique) components, the overlap of award and
nonaward cases would not be restricted to a central area, but
would extend the entire range. In such a case, even a linear
pseudo-sharp fit to a Figure 17 would show no effect. Evidence
incidental to the Certificate of Merit analysis in Thistlethwaite
and Campbell (1960: Table 1) shows that the distribution of
scholarship awards may have had this characteristic. Another
hope was that the linearity or curvilinearity might be established
by analysis of the awardees and nonawardees separately, and
then the pseudo-sharp analysis limited to this level of polynomial
complexity, excluding higher-order ones. Again, if the fuzzy area
were restricted to the central region, this might work, but not if it
extended throughout the range of observations. In any event, the
composite higher-order polynomials approach came to seem to
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us so unpredictably fickle as to recommend avoiding extreme
dependence upon them which any such method would involve
(Divgi’s [1979] demonstration of the extreme costs in power of
using higher-order polynomials augmented our dissatisfaction).
In contrast, for the “pure” genuinely “sharp” regression-discon-
tinuity design, the graphic presentation of scatter and column
means, provides nondeceptive visual evidence reducing greatly
the blind dependence upon curve-fitting statistics.

We considered one other approach to the fuzzy case that
remains unexplored. A visual comparison of Figures 16 and 17
will help communicate the basic insight. One of the clues that
indicate that in Figure 17 a substantial effect of the award has
been built in, is that for the columns containing a mixture of Xs
and Os, the column variance is larger than in the pure X or pure
O columns, a feature which is absent in Figure 16. If one assumes
homoscedasticity (which would be the case throughout if a
normal random true score had been used, as in all later
simulations from our group, by Sween and Trochim), then
deviations from uniform column variance that correspond to the
mixture of treated and untreated cases could be solvable for the
treatment effect, by assuming a constant level of effect indepen-
dent of true score or eligibility score, the impact-augmented
variance being greatest in those columns in which half of the
cases were treated. In general, homoscedasticity assumptions
seem obviously untenable for both dimensions in a curvilinear
plot. Perhaps for some such data sets, a limited homoscedasticity
might be plausibly assumed, in the form of equal column
variances in the absence of treatment effect. Having made this
one assumption, no other assumption of curve form nor any
estimate of it would be required in this analysis. Probably the
lower the correlation between eligibility and outcome (that is, the
larger the error components), the more reasonable are both
assumptions of linearity and homoscedasticity, although this
would not hold for the curvilinearity induced by floors or ceilings
in the measures.
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With my move to Syracuse in 1979 1 became less directly
involved in the continuing pursuits of an acceptable analysis for
the fuzzy case, but received regular reports from Trochim on his
own work and his collaboration with Spiegelman. Trochim began
with Goldberger's (1972) observation that in the fuzzy case, the
true regression lines in each group will be nonlinear. When
joined, the overall regression line in the null case will approxi-
mate an s-shaped curve. Trochim concluded that a fuzzy case
analysis would only work if one modeled the s-curve adequately.
Trochim’s basic insight was that a plot of the probability of
assignment to treatment given the pretest score would, in the
fuzzy case, typically yield an s-shaped curve of the type described
by Goldberger. He tested this idea out in simulations that
involved dividing the pretest scores into columns and, for each
column, computing the percentage of cases assigned to treat-
ments. This “‘assignment percentage” is a rough estimate of
probability of assignment to treatment and is used in place of the
dummy-coded assignment variable in the analysis. These simula-
tions convinced him that the approach had promise and, through
Bob Boruch, he contacted Cliff Spiegelman to obtain some
statistical consultation on the feasibility of this analysis. It turned
out that Spiegelman (1976, 1977, 1979) had recommended an
approach that was mathematically related but more exact,
although his recommendation had largely gone unnoticed. Spie-
gelman’s version involved computing a moving average of the
dummy-coded assignment variable across the range of the pretest
and substituting this estimate of probability of assignment to
treatment in the analysis. Trochim and Spiegelman (1980) then
collaborated on a paper that presented the statistical argument
and computer simulations (this work is described in Chapter 5 of
this text). This *probability of assignment to treatment” ap-
proach to the fuzzy case (or, in Trochim’s terms, the “relative
assignment”’ approach) was independently suggested by Barnow,
Cain, and Goldberger (1978) who recommended the fitting of a
probit function to the relationship between the dummy-coded
assignment variable and the pretest. The central difference

Foreword 37

between their approach and the Trochim and Spiegelman version
is their selection of a profit function to model the s-shaped
curvilinearity (Trochim and Spiegelman used essentially distribu-
tion-free strategy). While further work is nec led to explore the
appropriateness of these fuzzy regression-discontinuity analysis
strategies, they appear to have great promise for offering a
potential solution to one of the most critical problems besetting
the design.

I will close this personalized history of the regression-
discontinuity design with a report on some efforts to find
analyzable instances already implemented in public administra-
tive decision processes. As with randomized experiments, the
design is best used prospectively, with quantified decision
processes, recorded eligibility scores, and individual identifica-
tion records permitting follow-up on outcomes at a later time.
Usually its implementation will require a much effort and change
of customary admission processes as would a randomized
assignment to treatment. But with both methods, we should also
be alert for retrospective applications, due to administrative
arrangements designed for other purposes, such as fairness in the
distribution of scarce resources. With regard to randomized
assignment experiments, I think of the heroic efforts of Lee
Sechrest to try to make use of the land-redistribution lotteries in
Pakistan as well as lotteries elsewhere, and of Tom Cook’s
efforts, also failed, with the British lotteries (Cook & Campbell,
1979, pp. 372-373). A heroic retrospective application has been
performed by Sween (1984). Using the applicants to the National
Science Foundations’s fellowship program between 1952 and
1972 with eleven measures of scientific achievement as outcome,
up to twenty years beyond the application time for some cohorts,
Sween found that the narrow range in which many of the
variables were reported limited the usefulness of a regression-
discontinuity design. She found, for example, that the final
fellowship eligibility scores were limited to a 6-point ranking’
scale and that some of the outcome measures were dichotomous
(e.g., whether or not the NSF applicant received a Ph.D. degree).
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Sween suggests that one way of dealing with such data is to try to
replicate treatment effects with other quasi-experimental ap-
proaches. '

My Fulbright year at Oxford, 1968-1969, with the introduc-
tions provided by my host, Michael Argyle, was a great one for
quasi-experimental explorations at the national l'evel.AI visiteq t'he
Ministry of Transport and brought back the data on the British
Breathalyser crackdown of 1967 (Ross, Campbell, & Glass, 1970;
see also Ross, 1973). I spent still more time trying to find out if
British Eleven-Plus Exams (which at age 11 tracked pupils into
college preparatory or technical curricula) would provide an
exemplar of the regression-discontinuity design (Campbell,
1969b). 1 visited the Education Ministry’s research headquarters
at Slough and learned that most regions in England had
administered the Eleven-Plus Exams in conformity to a fuzzy
rather than sharp model. For borderline pupils, decisions were
modified by individual interviews, teachers’ reports, opportuni-
ties to retake the exams, and so on. However, there were a few
districts in which the total score on the one examination was
decisive. In one of these, H. G. Armstrong, Educational Psychol-
ogist for the County Education Department, West Riding of
Yorkshire, conducted at our grant’s expense a sample follow-up
of 1956 examinees. This follow-up showed that none of the pupils
near the university track cutoff point were getting into any
university. The 1946 change in the British educational system
had greatly increased the number of pupils being trained for
university education, and the Eleven-Plus examination system
had democratized to some extent the choice of those trained, but
the number of university openings had not been proportionally
increased. Thus the upward mobility “opportunity effect” or
passing the exam could not be measured for those near the
cutting point, where the regression-discontinuity technique could
have been used. It is quite conceivable that for this range of
pupils their eventual economic well-being had been harmed

rather than helped by being placed in the university track rather .

than in the technical training track. For such a study, the West
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Riding of Yorkshire records would have made possible an
excellent regression-discontinuity study. This was never explored.
Through George Madaus of Boston College, 1 later became
acquainted with Professor Thomas Kellaghan of the Educational
Research Centre, St. Patrick College, Dublin, and from them
learned of the Irish Learning Certificate, given to students
around 16 years of age, the passing of which had diverse
beneficial effects upon careers including entry to civil service jobs
and universities. Our project supported Vincent Greeney in
collecting test score records of the 1955 examination, and
exploring the possibility of follow-ups. The records gave names in
Gaelic spelling. For these, there are often several options in
English spellings. Telephone books and other tools for following
up individuals fifteen years later usually used English spelling.
The judgment was made that usefully dependable follow-up was
unfeasible. The structure of the examination system was very
complex, with several patterns of passing various numbers of the
dozen or so separate exams qualifying an examinee for an overall
pass. George Tanaka and I made several analyses trying to tease
out regression-discontinuity design possibilities, and in the pro-
cess encountered one of those understandable irregularities of
scoring that threatens the homogeneity-of-metric assumptions
upon which the method depends. The physics exam was scored
quantitatively, with a fixed-in-advance score for passing. The
distribution of scores approximated a normal bell shape except
for the near total absence of scores just one step below the
passing score, with a corresponding anamolous peak one and two
points above. The test graders were reluctant to leave unrevised
an item scoring that left examinees just one point below passing.
(Appropriate assumptions about this process would still have
permitted a very plausible regression-discontinuity analysis.)
The regression-discontinuity. design has received its greatest
use to date in the evaluation of compensatory education pro-
grams. Trochim has investigated over 200 such regression-
discontinuity analyses, has illustrated extensively the difficulties -
involved in implementing the design and the implications of these
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problems for estimates of treatment effect. His work is particular-
ly valuable for its description of the interaction of social and
political issues with the use and validity of the regression-
discontinuity design. But this history is best told by Trochim
himself and at this pecint I turn the reader over to his fine

extended presentation.
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Introduction to
Regression-Discontinuity

The term “regression-discontinuity” is a formidable one. Both of
its parts have negative connotations in their common meaning—
the notion of “regression” implying a move backward or a
reversion to some prior state; the term “discontinuity” implying
some type of interruption or disruption of a process. In fact, the
negative connotations are inaccurate from a methodological
perspective—the design is one of the strongest methodological

alternatives to randomized experiments when one is interested in
studying social programs.

Despite the methodological advantages of the regression-
discontinuity design, it has received little use in modern social
research. There are several reasons for this. First, the design is
probably not well understood. Until recently, few introductory
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methodology texts discussed it in any detail. This is most likely
because the design is inherently counter-intuitive. In other
multiple group designs, comparisen groups are chosen because
they are similar or comparable to the groups receiving the
program under study. In the regression-discontinuity design, the
program and comparison groups are deliberately apd specifically
different in preprogram ability. If the program group consists of
low pretest scorers, the comparison group will, by the structure
of the design, be higher scorers, and vice versa. Because of this,
the regression-discontinuity design appears, at first glance, to be
in flagrant violation of at least two major threats to internal
validity: regression to the mean and selection biases. In fact,
closer inspection of the logic of the design shows that these
threats are not prominant, but undiscriminating interpretation of
these issues can make the design a difficult one to defend when
facing audiences that are only briefly schooled in the theory of
validity. 4

Second, the design is not easy to implement. While all research
strategies are susceptible to poor implementation, in some ways
the regression-discontinuity design may be more sensitive than
most. In this sense, the strength of the design may also be its
greatest weakness. Its specific pattern of intervention into social
reality must be followed strictly. The correct execution of the
regression-discontinuity design is threatened by social, political,
and logistical problems in much the same way as in randomized
experiments, and in some cases the difficulties are more serious.
For example, assumptions about the functional form of the pre-
post distribution are far more critical in regression-discontinuity
than randomized designs.

Third, the statistical analysis of the regression-discontinuity
design is not trivial. In typical circumstances, a good deal of
judgment is required to accomplish the statistical modeling. The
nature of the design makes it particularly susceptible to the
influences of outliers, floor and ceiling effects, test “chance”
levels, and similar factors that may be less salient in other
strategies. In the end, one must rely heavily on assumptions of
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the statistical model used and on the ability to discern visually
whether a program effect is plausible.

Fourth, the range of applicability of the design is not fully
appreciated. Typical presentations stress the pre-post program-
comparison group version of regression-discontinuity, but the
design is far more flexible than that. Especially neglected is the
potential for using the regression-discontinuity design coupled
with quantitative resource or program allocation formulas com-
mon to many social programs.

Finally, there are few good instances of the use of this design
to guide researchers. Outside of its use in evaluating the effects of
compensatory education programs, few published examples can
be found.

Despite its very real limitations, there are two major reasons
that the design needs to be understood better by the applied
social research community. First, it is important as an applied
research technique. It is conceptually compatible with the
political and social goal of allocating scarce resources to those
persons or entities that need or deserve them most. The
alternatives to regression-discontinuity typically require that
persons who might otherwise be eligible for a program be denied
it, either arbitrarily or for the sake of a rigorous test of the
f:ffectiveness of the intervention. Second, regression-discontinuity
is important for theoretical reasons alone. It occupies a critical
position in the taxonomy of research designs and, because of this,
incre.ases our understanding of other designs and suggests
splutlons to generic technical problems, most notably the difficul-
ties associated with selection biases.

THE BASIC REGRESSION-DISCONTINUITY DESIGN

Before discussing the relationship of regression-discontinuity
to other re_search designs and its place in the context of social
policy evaluation, it is important for the reader to have an initial
understanding of the mechanics of the design. In the next two
sections, a simple example of the design is presented along with
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an introductory discussion of some of the major issues of
relevance.

The regression-discontinuity design is one member of a larger
class of quasi-experimental methods that can be termed pretest-
posttest group designs. In their most basic form, they require a
preprogram measure (€.g., the pretest), a postprogram measure
that can reflect the effect of the program being studied (e.g., the
_posttest), and a measure that describes the assignment status of
the persons in the study (assignment variable), usually whether
they received the program (program group) or did not (compari-
son or “control” group). :

The regression-discontinuity design can be distinguished from
the other pretest-posttest group designs by the nature of its
assignment strategy. In regression-discontinuity all persons are
assigned to program or comparison group solely on the basis of a
cutoff score on the preprogram measure. Thus, once a cutoff
score has been established, all persons scoring on one side of this
score are assigned to one group (e.g., program) while those
scoring on the other side are assigned to the other (e.g.,
comparison). The design is useful whenever one wishes to study a
program or procedure that is given out on the basis of need or
merit. This is the case in compensatory education where children
in greatest need of additional instruction (as reflected in a pre-
instruction measure) are targeted to receive the services; or, in
medicine, where those who most require a new surgical proce-
dure (as reflected in a presurgery measure of severity of illness)
are selected for surgery; or, in the awarding of scholarships where
those who exceed a certain cutoff criteria (as measured in a test of
skill or intelligence) are given the award. In all cases, the
postprogram measure is presumed to reflect the effect of the
program or procedure.

Perhaps the best way to understand the idea of the regression-
discontinuity design is through graphs. First, consider what
happens when persons are measured “pre” and ‘“‘post” but no

program is administered (ie., the null case). This situation is -

depicted in Figure 1.1. The figure shows the relationship between
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the pre and post measures for each person in the study. The
horizontal scale indicates the range of pretest values while the
vertical depicts the posttest. Each point on the graph reflects a
pretest and posttest score for a given individual. A continuous
straight regression line with positive slope would describe the
entire distribution well.

Next, let us consider how the data might loox when using the
regression-discontinuity design. In Figure 1.2, hypothetical data
is presented for the case of regression-discontinuity applied to the
study of a compensatory education program. In this hypothetical
example, the cutoff score is zero and all students achieving a
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preprogram score that is less than or equal to zero receive the
special instruction (program group). In the graph., program
group scores are indicated by an “X” while comparison scores
are sigmfied vy an *0.” .
We can understand how the regression-discontinuity design
works by considering first just the comparison group scores. The
portion of the graph to the right of zero on the preprogram
measure shows the pretest and posttest scores for those students
who did not receive the special instruction being studied. A
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Figure 1.2 The Regression-Discontinuity Design with a Program Effect
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regression line could be fit to these scores to describe the pre-post
relationship. If this regression line were extended into the region
of the program group scores (i.e., to the left of zero on the
preprogram measure) the extension would represent the pre-post
relationship that would be expected in the program group if they,
like the comparison group, had not received the instruction (as
shown in Figure 1.1). This situation is shown in Figure 1.3 where
the comparison group regression line is indicated by the solid line
to the right of zero on the pretest and the expected program
group line is indicated by the dashed line. .

The essential idea in regression-discontinuity analysis is to
determine whether the observed pre-post relationship in the
program group differs from the expected relationship as derived
from the comparison group scores. For reasons that will be
discussed in Chapter 5 this is typically most appropriately
reflected in the difference between the program and comparison
group regression lines at the cutoff point. In Figure 1.3, the
obtained program group regression line is indicated by the solid
line to the left of zero on the pretest. For any pretest value the
obtained line has a higher posttest score than does the line
projected from the comparison group scores (in this example, the
difference is a constant amount). This indicates that the program
group students scored higher on the posttest than was “expected”
and one can infer that the instruction had a positive effect on
posttest scores. Similarly, if the observed program group regres-
sion line had been displaced below the expected line, one could
assume that the instruction affected students negatively.

The vertical difference between regression lines at the cutoff
point corresponds to what is typically called a “‘main effect.” The
design can also be used to examine “interaction effects”, that is,
the degree to which program gain is related to the pre-program
measure. Figure 1.4 shows only the regression lines for a number
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104

Figure 1.3 Regression Lines for Regression-Discontinuity Design of Figure 1.2

of possible outcomes from a regression- -discontinuity desxgn

Figure 1.4a shows the null case—there is no discontinuity in the
overall regression lines at the cutoff. Figure 1.4b shows the case
just discussed—an additive positive program effect. A negative

effect, or program group loss is depicted in Figure 1.4c. Notice
that the program group scored lower on the posttest than would
be predicted from extension of the comparison group line. Figure
1.4d shows an interaction effect without a main effect. While not
everyone in the program group appeared to benefit (those nearest
the cutoff did not gain), the lower the preprogram score, the
greater the posttest gain. Thus, an interaction effect is defined as
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a discontinuity in the slope of the regression lines at the cutoff.
Figure 1.4e shows both a main and interaction effect—disconti-
nuities in both the level and slope between the two groups.

It should be recognized that the above examples illustrate only
a simple version of the design. For instance, the preprogram:
measure can be a pretest (i.e., the same test as the posttest or an
alternate form of the same test) or it can be a different measure or
composite of several measures. The program group need not be
the persons scoring below the cutoff score. If the program is
given out on the basis of merit, those scoring above the cutoff
might receive it. It is not necessary that the pre-post relationship
be linear—any shape that can be modeled with a regression line
would be appropriate. The design is not only appropriate for
what is traditionally termed ‘“‘outcome” evaluation. If suitable
measures are taken (of all participants, not just the program
group) while the program is in action (e.g., measures of change in
attitude over the course of the program), the design can be used
to study process issues. Similarly, as long as a cutoff assignment
rule was followed and persons on both side of the cutoff were
measured, the design can be used in a post hoc analysis of
archival data. Variations of the design are discussed more fully in
Chapter 3.

SOME ASSUMPTIONS OF REGRESSION-DISCONTINUITY

All research designs are based on assumptions. Some are
common to almost every design—sufficient quality of measure-
ment, statistical power, correct implementation of the program,
and so on. Others are peculiar to a given design and serve to set it
apart. The regression-discontinuity design can be characterized
by three central assumptions: perfect assignment relative to the
cutoff, correct specification of the statistical model, and the
absence of “‘coincidental” functional discontinuities. All three are
related to the most distinctive feature of the design, the
assignment to condition solely on the basis of a cutoff score on a
preprogram measure.
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a. The Null Case b. Positive Main Effect

L

d. Positive Interaction Effect

c. Negative Main Effect

"
e

e. Positive Main and Interaction Effects

Figure 1.4 Hypothetical Regression Line Outcomes for a Compensatory Regression-

Discontinuity Design
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The first assumption of the regression-discontinuity design has
to do with adherence to the cutoff criterion. The design assumes
that there is no misassignment in terms of this cutoff—persons
who by their preprogram score should be placed in one group
must not be placed in the other. Misassignment can occur for a
variety of reasons. If potential participants have political “pull,”
they may be able to prevail upon administrators to misassign
them into a desirable program or out of an undesirable one.
Sometimes, misassignment can arise because a well-intentioned
administrator does not wish to deny a potentially beneficial
program to certain persons, especially those narrowly missing
inclusion. Another cause of misassignment is administrative
error, that is, insufficient vigilance in assuming that the cutoff
criterion is adhered to. Some misassignment will be easily
detected by noting cases that did not fall into the appropriate
groups, while at other times it will be impossible to detect as
when persons are given the program but their participation is not
recorded. _

. Misassignment relative to the cutoff score has been termed
“fuzzy” regression-discontinuity by Campbell (1969). When the
cutoff is strictly adhered to, we can term the design “sharp”
regression-discontinuity. With certain types of “fuzzy” assign-
ment (e.g., random misassignment around the cutoff) the tradi-
tional analytic strategy discussed later will yield unbiased
estimates of program effect. Other types of misassignment are
known to yield biased estimates (Goldberger, 1972). The basic
regression-discontinuity design requires sharp assignment. How-
ever, the design would be far more flexible if this assumption
could be relaxed and fuzzy assignment allowed, thus making it

- possible for administrators to use more discretion in the assign-

ment of special cases. There has been a good deal of theoretical
work on analytic strategies appropriate for “fuzzy” regression-
discontinuity (Campbell, Reichardt, & Trochim, 1979; Trochim,
1980; Barnow, Cain, & Goldberger, 1978; Spiegelman, 1976) that
will be discussed in greater detail later.
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A second major assumption of regression-discontinuity is that
the analytical model used to estimate program effect accurately
describes the true pretest functional relationship. For example, if
the true relationship is in fact linear, but the analysis uses only
quadratic, cubic, logarithmic, or other functions, biased estimates
of effect are likely. Since the true model is seldom known, one
usually chooses a model either a priori, based 'upon experience
with similar data, or through testing likely alternative models.
An analyst might, for example, state a priori that the pre-post
relationship in the absence of a program is linear, infer from
previous experience with the same test and subjects that it is so,
or test this hypothesis against likely alternatives such as quadrat-
ic, logarithmic, and so on. The problem with models selected in
this way is that one is never sure that the chosen model is correct.
One approach to model specification is outlined in Chapter 5. It
is appropriate only for a certain class of functions (i.e., when the
true pre-post relationship can be expressed as a finite and low-
order polynomial) and is designed to reduce the possibility of
selecting estimates of effect that are biased due to model
misspecification.

The third assumption is that there are no other factors that,
even in the absence of the program, would result in a discontinu-
ity in the pre-post relationship at the cutoff point. This can be
conceptualized in two ways. First, if an effect is observed, it may
be due to something other than the program. Second, the effect
could be partially due to the program and partially to some other
factor. The latter implies that the size of the program effect may
be incorrectly estimated and that, even if no effect is observed,
this may be due to either an ineffective program or to counteract-
ing factors that disguise the effect.

Any factor that affects the scores in one group and not the
other can lead to a discontinuity that is mistaken for a program
effect. For example, if the program participants are put in one
setting while the controls are in another, any factor associated
with the setting (and not the program) that affects the posttest
will look like a program effect. Therefore, the regression-

Introduction 57

discontinuity design assumes that all group factors that differen-
tially affect the posttest, other than the program itself, are
accounted for in either the design or analysis.

This brief look at the assumptions that underlie the regression-
discontinuity design illustrates the importance of investigating
the application of the design in various contexts. While method-
ologists can outline potential violations of assumptions, a study of
research implementation can determine which assumptions are
violated most often and why. The final two chapters of this work
involve an investigation of the appropriateness of the assump-
tions of regression-discontinuity within the context of compensa-
tory education where the design has been almost exclusively
used.

SOCIAL POLICY AND RESEARCH DESIGN

The regression-discontinuity design is not the only strategy
available in social research, nor is it necessarily the best in any
specific setting. Put simply, there is more than one way to
evaluate any social intervention. In order to understand when
regression-discontinuity might be appropriate it is important to
look at its relationship to other designs and to consider some of
the factors that affect design choice in social policy evaluation
contexts. This section discusses the ways in which society
allocates resources (e.g., social programs and their goods) and
how this is related to the selection of research designs.

Over the past few decades, applied social scientists have
aggressively sought strategies for evaluating the effectiveness of
social programs and interventions. A major question is whether
these programs “help” or “make a difference” in some problem
area. The question is by definition a relative one—we typically
want to know whether a particular policy works better than some
other one or better than no active policy at all. In order to assess
this, we often want to look not only at those who receive the
program being evaluated, but also at a similar group of persons
who do not, because they provide a standard of comparison
against which the program in question can be weighed. The issue
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of who receives the program and who does not is therefore.
critical not only from a programatic perspective, but also from an
evaluative one. Often these two points of view operate at cross-
purposes. The policymaker addresses a political and economic
context, allocating resources and programs where they might
have the greatest impact. The evaluator is primarily concerned
with determining that impact and is often willing to deny the
resources (even if only temporarily) from some of the target
population so that a good comparison group might be attained
and the program might be “fairly” tested. If the two perspectives
are to be linked, the policymaker must recognize the evaluator’s
need for a comparative standard that is fair and the evaluator
must seek research strategies that are consistent with the political
and economic realities of resource allocation.

All societies follow certain procedures or rules for allocating
resources. In this context, “resources” can be viewed in a broad
sense and can consist of wealth, material goods, status, and such
negative entities as penalties and taxes. In a social policy sense,
goods are often allocated through definable programs that are
constructed to assure better health, education, financial security,
and so on.

Most allocation procedures can be classified broadly into three
types (or-some combination of these). The first of these can be
termed a lottery allocation. Here, all potentially eligible persons
are placed in a ‘“‘pool” and. each is given an equal chance of being
selected to receive the resource in question. The notion goes back
to the ancient practice of ‘‘drawing lots to allocate scarce
resources. Sometimes the practice is used to allocate risk levels,
as when soldiers draw lots to determine who will undertake a
dangerous mission. This strategy was used to determine which
young men in this country would be drafted for military service
during the Vietnam war and is also the basis for the awarding of
financial prizes to those who participate in state-organized
gambling. In social program arenas, it has been used to determine
who should be selected to test new drugs or surgical techniques,

SR
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novel sentences for criminal offences, new approaches to taxation
and welfare, and a variety of other innovations.

A second and probably more common form of resource
disbursement can be termed political allocation. Here, resources
are only partially (if at all) given to those who need or deserve
them according to some rational criterion. Instead, the process is
either haphazard and marginally specifiable or is heavily influ-
enced by political and economic power (often in ways that are
difficult to detect). In fact, it is often the unspecifiability of the
process that makes it so desirable. The allocation of careers
through “old boy” or “old girl” networks or of military
expenditures on the basis of geographically based congressional
power are examples of this type of allocation.

The final strategy for allocation can be termed meritorious. In
this case, persons are given resources because according to some
specific criteria they “deserve” or “need” them. The strategy is
more clearly specifiable than a political one and, therefore, more
inherently accountable. It occurs when awards are given to those
who perform well or show promise or when special assistance is
given to those who perform poorly or are most needy. For
example, risky new surgical techniques may be tried only for
those who are most desperate or special financial grants given
only to those who are most poverty stricken.

" Distinctions between allocation strategies are critical when .
trying to evaluate the effects that resources have on peoples’ lives.
Typically, the evaluator will have little control over the manner
in which resources are disbursed and will have to devise research
designs that can be used for various allocation procedures that
might be followed. It is important to bear in mind that from an
evaluative point of view it is critical to find a fair comparison
group against which the resource in question can be evaluated.

The three allocation procedures just described yield different
comparison groups by definition and these will differ in the
quality of their comparative value. When one allocates by lottery,
there will necessarily be a group of people who do not receive the
resource by chance alone. All things being equal, this group will
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be similar to the recipient group in most ways. With political
allocation, groups who don’t receive the resource are likely to be
deficient in political or economic power (or in some other way)
and this deficiency will be difficult to specify because of the
partially covert nature of the process. With meritorious alloca-
tion, persons who do not receive the resource will differ from
those who do, but here the difference will be specifiable especially
if the criteria for allocation are clear. From an evaluation
perspective, lottery allocation yields the most similar comparison
group while meritorious allocation generates the least similar.
With political allocation it is generally difficult to know how
similar the recipient and nonrecipient groups might be. When the
degree of similarity can be specified accurately, the evaluator will
usually be able to make fairer comparisons (lottery or meritori-
ous allocation), but when it is not (political allocation) the
comparisons will be tenuous and assumption-laden.

It is not surprising that the three major types of research
designs that can be used to test the effects of social programs
correspond to the three allocation strategies outlined above. The
designs are distinguishable on the basis of the procedures that are
used to assign persons to receive the program study (i.e., the
procedures used to “allocate the program’). When persons are
randomly assigned or assigned by lottery, the design is termed
“experimental.” The groups that are created are probabilistically
equivalent on preprogram characteristics, that is, on average the
groups will appear similar on any prestudy traits that are
measured. Designs that are not based on random assignment are
traditionally termed “quasi-experimental.”” They “look like”
experimental designs in that they include comparison groups, but
we can question whether the groups are truly similar.

The political and meritorious cases can be distinguished by the
degree to which we can specify the assignments procedure and
the similarity between the recipients and nonrecipients. Both
cases are likely to yield “nonequivalent™ or dissimilar groups,
and, therefore, both designs are considered *‘nonequivalent group
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designs.” But in the case of meritorious allocation, the assign-
ment criteria are specifiable—it is implied that there is some
cutoff value or values on some criterion measure or measures that
determine who receives the resource and who does not. For
instance, persons who fall below some specific income level might
receive a financial grant; students who exceed a specific grade
point level might win a scholarship; patients who exceed some
particular illness level might be given an experimental treatment
or therapy. The term “‘regression-discontinuity” is used to refer
to research designs that are based on meritorious allocation
where cutoff values on preprogram criterion measures are used to
determine assignment to condition. The distinctions between
research designs and their relationships to allocation procedures
are summarized in Figure 1.5. Note especially that the distinction
between quasi-experimental designs in general and the specific
subgroup known as regression-discontinuity designs depends on
the specifiability of the assignment criteria and, more particular-
ly, on the existence of a cutoff value on some continuous
preprogram criterion measure.

Another way to view the distinctions between designs is
through graphs of their assignment strategies. Figure 1.6 shows
such a graph for a simple two-group pretest-posttest randomized
experiment. The pretest is graphed on the x axis and the
probability of assignment to the program group on the y axis. In
the simple random assignment case, the odds of being assigned to
the program are 50/50 for all pretest scores and therefore the
graph consists of a horizontal line at p = .5. At the other extreme
is the regression-discontinuit)} design. Figure 1.7 shows the
assignment probabilities when those who score below a certain
pretest value are given the program (i.e., the *“compensatory”
case).? For those below the cutoff the probability of assignment to
programs is p = 1.0, while for those above the cutoff it is p = 0.0.
All other nonequivalent group designs have assignment functions
that range between the extremes of random and cutoff assign-
ment. Two examples are shown in Figure 1.8. If the groups that
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Figure 1.5 Classification of Causa!l Hypothesis Testing Research Designs

are selected are nearly equivalent, the assignment function will
more closely approximate that of the randomized experiment as
shown in Figure 1.3. If the groups differ considerably before-
hand, the function will be closer to that of the regression-
discontinuity design. :
These graphs of the probability of assignment for any pretest
point out the underlying continuum between experimental and
quasi-experimental designs in terms of preprogram equivalence
between groups. At one end of the continuum are randomized
experiments that guarantee that the groups will be probabilisti-
cally equivalent on the pretest. At the other extreme are
regression-discontinuity designs that guarantee a maximum non-
equivalence. Nonequivalent group designs fall between these two

Figure 1.6 Probability of Assignment to P\rogram for the True Experiment

extremes. The implication of this continuum for the statistical
analysis of regression-discontinuity will be discussed later.

In general, when internal validity is desired, randomized
experiments are to be preferred to quasi-experiments. Boruch
(1975a) has argued that random assignment is feasible and
ethical across a wide range of social research areas. Nevertheless,
there are frequently situations in which random assignment is not
practical due to program constraints, ethical considerations (e. g
reluctance to deny the program to “needy” persons) or other
logistical factors. In these cases a quasi-experimental strategy
may be called for. Quasi-experiments are usually considered
inferior to randomized ones because postprogram comparisons
between groups are made equivocal by likely preprogram none-
quivalence. However, quasi-experimental designs where the as-
signment strategy is perfectly known (e.g., regression-discontinu-
ity) are generally preferable to designs with unknown assignment.
All things being equal, if the assignment strategy is known it can
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be used in the statistical analysis tO “adjust” for preprogram
nonequivalence and to yield unbiased estimates of postprogram

differences.

Thus, regression-discontinuity designs, which are based on
known assignment procedures, are among the strongest of the
quasi-experimental strategies. When random assignment to
groups is not possible, for either research or social policy reasons,
regression-discontinuity designs should be a seriously considered

alternative.

NOTES

1. In all graphs, itis assumed that the program was given to lower pretest scorers, that
is, that this is the compensatory case. In addition, it is assumed that high scores on either
measure reflect a more positive performance. It is important to mote that the
interpretation of program offects as “‘positive” of “negative” is always dependent on
whether the program was given to high or low pretest scorers and the directionality of
scale in the posttest.

2. If the regrasion-discontinuity assignment is “meritorious” in nature, the step
function of Figure 1.7 would be revised with low pretest scores having p = 0 and those
above the cutoff p = 1. Similarly, in nonequivalent designs where the program group

happens to be superior on the pretest, the assignment function would range between the

random one in Figure 1.3 and the regrasion-dnscontinuity “meritorious” case.



A Short History of
Regression-Discontinuity

Why should we look at the history of a research design? Outside
of several obvious considerations—the value of documentation,
the need for a literature tradition—an historical perspective
serves to underscore the fact that research designs are dynamic
and evolving entities, not static mechanistic ones. As subsequent
chapters will demonstrate, many of the issues in the regression-
discontinuity framework remain unsolved or only partially

. _concluded. Good understanding of current issues requires some

sense of the contexts that generated them. The story of the
regression-discontinuity design encompasses several interesting
dramas including the technical disputes of methodologists and
statisticians, the political and financial arguments of the evalua-
tion research industry, and the social debate of Congress and the
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use of the design on aggregate units; and the use of the design on
a post hoc basis.

ASSIGNMENT VARIATIONS

The major distinctive characteristic of the regressiondisconti-
nuity design is the assignment to condition on the basis of a sharp
cutoff score on a preprogram measure. There are many aspects of
this assignment strategy that can be altered to improve the
estimates of program effect that are generated.

In theory, the most methodologically sound way to assign
units or persons to conditions is through random assignment. In
fact, the regression-discontinuity design is recommended primari-
ly when random assignment to conditions is not feasible. A major
advantage of random assignment (assuming that the program
groups have a sufficient sample size) is that the groups that are
assigned will on the average have the same expected value on any
characteristic measures prior to the administration of the pro-
gram. Thus, groups can be considered to be “equivalent” prior to
the program and differences that occur can be attributed to either
the program or some other event that occurred subsequent to
assignment. For a variety of reasons, random assignment to
condition is not used as frequently as would be desired (Boruch,
1975a). ’

Little work has been conducted to compare the regression-
discontinuity design directly with the true experiment (i.e., a
design based upon random assignment to condition). Goldberger
(1972) suggests that all things being equal, one needs at least
2 1/2 times as many program participants for the regression-
discontinuity design as for a randomized design in order to attain
the same degree of precision in estimating program effect. One of
the strongest variations of the regression-discontinuity design,
therefore, would be one that incorporates random assignment to
condition, at least in part. Much of the following discussion on
coupling the regression-discontinuity design with random assign-
ment follows from the suggestions outlined by Boruch (1975b).
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Many of the difficulties that occur in the implementation of
the regression-continuity design stem from the requirement of
adhering to a strict cutoff. While lack of adherence to this
requirement may be motivated by a factor like political favorit-
ism, it is often the case that misassignment is due to the
reasonable belief that persons closest to the cutoff score may be
misassigned simply as a result of random error in the preprogram
measure. Thus, an administrator may feel that a test score for a
certain individual does not reflect well that person’s ability. If the
person scored near the cutoff, their assignment could be depen-
dent on whether they had a good or bad day or on factors related
to the testing setting. An alternative to the sharp cutoff
procedure would be to define a cutoff interval rather than a single
cutoff point and to randomly assign persons within this interval
to program or comparison group. Within this cutoff interval it
would be assumed that all persons have approximately the same

“true score but differ on the measure primarily due to random

measurement errors. Conceptually, it might even be useful to set
the width of the interval on the basis of some estimate of
measurement error (such as the standard deviation or standard
error).

One way to view this modified design is as a true experiment
“imbedded” within a regression-discontinuity design. Several
analytic strategies would be possible. One could analyze just the
data within the cutoff interval as a true experiment of its own.
Alternatively one could analyze the data on either side of the
cutoff interval by means of a standard regression-discontinuity
analysis where the cutoff is the midpoint of the interval. Such a
strategy would only be recommended for cases where the cutoff
interval is relatively narrow and regression lines could be fairly
estimated for the remaining data, especially in the comparison
group. Finally, it would be possible to include all the data in a
standard regression-discontinuity analysis as outlined in Chapter
5, even though assignment is not sharp relative to the cutoff. This
is acceptable as long as random assignment within the cutoff
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interval has been adhered to because random misassignment
around a cutoff will not result in biased program effect estimates.
This design would be especially useful where the possibility of

nonlinearity in the data exists. Assuming that there is sufficient

sample size for groups within the cutoff interval, one would be
most confident in the estimates generated by the true experimen-
tal portion because nonlinearities would be' equivalent across
groups. The analysis of the data for the whole range on the
preprogram measure could be conducted to increase the precision
and generalizibility of the estimates and as an aid in determining
whether there are problems that occur in the tails of the
distribution. This design has been discussed as an extension of the
“tie-breaking experiment” by Campbell (1969), Riecken et al.
(1974), and Boruch (1973).

Random assignment could be incorporated at other points
along the preprogram continuum than in the vicinity of the cutoff
point. This might be most useful if random assignment is not
feasible for all the participants but can be justified for a smaller
number of “test” participants. There are three ways in which this
could be done. First, one could randomly select points on the
preprogram measure at which random assignment to condition
would be used. This is superior to randomizing within a small
interval because it allows one to generalize across a wider range
of scores. Second, one could systematically select values or ranges
on the preprogram measure within which participants are
randomly assigned (Hansen, 1977). This would be useful espe-
cially in evaluation if it could be done at the extremes of the
pretest distribution. Here, any floor or ceiling effects would be
accounted for by the fact that they would be exhibited equally, on
the average, in both the program and comparison groups.
Finally, one might be able to randomly assign within certain
subgroups or subpopulations. While it might not be possible to
randomly assign throughout an entire school district, for in-
stance, it might be feasible to select several schools as test sites
and to randomly assign within the schools.

i
;

Felgerieaesis,
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As above, several analyses would be appropriate. In effect, one
has imbedded a randomized block design within the regression-
discontinuity. One would place greatest confidence (in terms of
internal validity) in the analysis of the randomly assigned cases
and could include other cases for purposes of increasing precision
or for completeness in reporting and generalizability. A major
reason cited for not using random assignment in Title I
evaluation is because it will result in a situation where students
who need and may be eligible for service are denied such service.
This criticism makes less sense when one considers that the
procedures for allocating Title I services to schools lead to
students (who qualify for the program on the basis of their
pretest score) being denied service because they come from
designated non-Title I schools. It should be noted that random
assignment to program or comparison group is advocated within
the Title I evaluation system as a version of Model B, but this
design is almost never used. Nevertheless, some of the advantages
that result from using random assignment can be achieved
through coupling such strategies with Model C, the regression-
discontinuity design, as mentioned here.

There are several other useful applications of random assign-
ment within the regression-discontinuity design. This includes
the random assignment of schools to Title I or non-Title I status,
or the use of a cutoff interval in assigning schools with all schools
within that interval being randomly assigned. One could easily
devise analogous designs at the classroom level or, perhaps, even
at the school district level. In general, imbedding random
assignment procedures within the regression-discontinuity design
will improve the methodological qualities of the study and should
be encouraged.

In addition to random assignment to conditions, there are
times when random selection from a larger population will
improve the design and its analysis. It is, for example, acceptable
within the Title I evaluation system to select a comparison group
randomly from the population of comparison students in a
district. In a district that has a large number of students, it may
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be more efficient to select randomly a small comparison group
for purposes of analysis, although in general it would be
preferable to include all such students if that is possible.
Another use for random selection would be possible where
programs are administered in two phases with half of the eligible
persons receiving service in the first half of a year (or some other
appropriate period) and the remaining persons receiving it in the
second half. Here, one randomly selects from eligible persons
those who will get the program first and those who will get it
second. The advantage of such a strategy is that one has a
suitable comparison group (namely, those persons who are not
serviced in the first half of the year), without the need to
ultimately deny service to any eligible persons. If such a strategy
proves unworkable it might be possible to modify this by instead
randomly selecting those institutions (e.g., schools, social agen-
cies) that will implement the program in the first half of the year
and those that will do so in the second. This type of design is a
powerful methodological alternative to the three models that are
currently used for Title I evaluation, and should be encouraged.
Three separate analyses could be used. The first would involve a
comparison of students who received Title I service in the first
half of the year and those eligible students who did not. The

second would involve the comparison of the same two groups-

after the students have all been served. In the first case, one
would expect that if the programs have an effect, such an effect
would be detected. If one is found, and if the second phase of the
program also has an effect, one would expect that the original
difference between the two groups would diminish in the second
analysis. Finally, a standard regression-discontinuity analysis
could be applied for both program groups separately or the two
combined. One can readily conceive of interesting, and at times,
even more complicated design variations. For example, students
who receive service in the first half of the year could be assigned
to either continue service or not for the second half of the year.
This assignment could be random or could be by means of the

cutoff score. Thus, one could have a regression-discontinuity
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design imbedded within a true experiment that is in turn
imbedded within a larger regression-discontinuity design.

When random assignment is not possible it is often useful to
search for other comparable groups of students that can act as
comparisons in the analysis. This essentially involves coupling
the pretest-posttest nonequivalent group design (Reichardt, 1979)
with the regression-discontinuity design. With this design, equiv-
alence between the groups is not assumed, that is, nonequivalence
is allowed. Consequently, the potential for biases due to selection
is ever present. A strategy of this type is readily available in Title
I evaluation because of the existence of schools that are ineligible
for Title I and are likely to have students who score below the
district cutoff point and, hence, could be used as comparison
students. Matching of students from Title I and non-Title I
schools is not advisable (Campbell & Stanley, 1963) and no ready
strategy for selecting a “‘comparable” group from the non-Title I
schools is available. As a result, an analysis like this should be
interpreted cautiously. There may be times when it is possible for
a design of this type to be incorporated at school district levels.
This might be so if a school district that is not receiving any Title
I funds can be located and is comparable to the district receiving
funds. This is not likely, however, due to the fact that most
school districts in the country receive at least some Title I
funding.

Another variation on assignment strategies would involve the
use of multiple cutoff points with the group most in need being
served first, the next needy group second, and so on. In this case,
the first group could stop receiving service when the second
group begins or each group could continue receiving service once
it has begun. Separate analyses could be conducted comparing
the most recently serviced group with all persons not yet
receiving service, or a single analysis could be run by including
suitable program by order of admission terms into the analysis. It
is important to recognize with this design that there will probably
be a need for repeated testing of all subjects. Thus, a pretest is
administered, a test is administered as a posttest for the first
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program group and all comparisons, another test is administered
as the second posttest, and so on.

A variation of this stagewise design is suggested in Riecken et
al. (1974) and is termed a “trickle” design. This design is
especially useful for an agency that is continuously processing
persons through its program such as a hospital, mental health
center, or social agency. It is necessary in thig variation that the
number of applicants exceed the number of available spots in the
program at any given point in time. Al] applicants are tested
when they present themselves to the agency and are put into a
pool for the next cycle of the program. For this pool of
applicants, a cutoff score on the preprogram measure is selected
on the basis of the number of available spots in the program. The
problems that occur here are related to the fact that one is likely
to have different cutoff points each time the program is run,
depending upon the number of applicants who present them-
selves. Nevertheless, this variation of the design would be a useful
method for agencies that are continually processing applicants.

MEASUREMENT VARIATIONS

The assignment to conditions under the regression-discontinu-
ity design is dependent upon the measure or measures used to
assign. Technically, the assignment measure need not be statisti-
cally related to the posttest, although this may be desirable for
conceptual reasons and for statistical power. In addition, it will
often be useful to construct a composite variable made up of
several measures suitable for assignment. In educational evalua-
tion, such a composite variable might include an achievement test
score, a grade point average, a rating of need by a teacher or
admissions committee, and the like. Technically, it is not
necessary that the variables that go into this composite be
continuous ones. One could use dichotomous designations,
rankings, or ratings (e-g., 5- or 7-point Likert-type ratings).

It is desirable that the composite measure be close to a
normally distributed continuous variable with adequate measure.-
ment properties. For example, if a 5-point Likert rating of the
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acceptability of a person for the program is used, it would be
advantageous to have several administrators, or other program
personnel complete this rating and to average the scores. As a
result, the 5-point scale would be transformed into a scale with
finer gradations than the original 5 points. The major problems
in developing composite assignment measures are related to how
individual variables should be combined and how missing
observations on these variables should be handled. The formula
for the composite measure could be additive, multiplicative, a
combination of these, based on a ratio of several variables, and so
on. Each variable could be weighted equally or in accordance
with the preferences of the particular agency. Another strategy
could be to use multivariate statistical methods such as multiple
regression analysis or factor analysis for devising a composite
measure. It is not clear how one should proceed in the event that
there are missing observations on one or more of the variables
that enter the formula. This would be analogous to the univariate
case where the pretest value is missing. One might attempt a
more complicated assignment model for the case of missing data
by utilizing other information to estimate the missing values.
Issues related to the development of composite measures have
been discussed by the RMC Research Corporation (1979),
Campbell (1969), Cordray (1978), and Boruch (1973).

PROGRAM VARIATIONS

Variations of the basic regression-discontinuity design can be
developed by altering the usual dichotomous program-control
designation. Many of these variations have been mentioned
earlier and, as a result, will only be discussed briefly. First, it is
possible to have multiple levels of the program or to test different
versions of the program. In Title I evaluation, for example, one
could test different amounts of the program (e.g., five days versus
three days a week versus one day a week), different settings (e.g.,
in-class versus pull-out), as well as different methods of instruc-
tion. The sets of comparisons can be made with or without a
comparison group, although they will usually be stronger if “no
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program” comparison groups are included because in those
groups the bivariate distribution will not be affected by the
program. When this is not possible, as in the case of federal
grants where all potential recipients receive some degree of
funding, comparison of different levels of the program, especially
if the difference between them is quantifiable, will often provide
useful information relevant to the program effect. Again, it is
important to recognize that when multiple program conditions
are used, persons must be assigned to these using a sharp cutoff
sriterion in order for the design to be considered a regression-
discontinuity design.

POSTPROGRAM MEASURE VARIATIONS

It has been mentioned throughout this work that it is not
1ecessary for the pretest and posttest to be the same measure. In
act, any measure that is relevant to or is likely to be affected by
‘he program may be used as a posttest. In addition, it is not
1ecessary to limit the study to one posttest for each pretest, that
s, several measures can be analyzed for the same pretest.

In educational evaluation there are several ways in which
ilternative post-program measures might be incorporated. Most
standardized achievement tests, for example, are comprised of
several subscales or subtests. Thus, a reading score might be a
:omposite of scores obtained from tests of spelling, grammar, and
sunctuation. There is no reason why the analysis of the effects of
1 reading program should be limited to looking only at effects on
‘he total reading score. Separate analyses could be conducted
asing each of the subscales as postprogram measures.

To illustrate the use of different measures of postprogram
rerformance, data from the third grade reading and fourth grade
nath programs in Providence, Rhode Island, were reanalyzed
1sing subtests in place of the posttest. In the analyses using total
sosttest score, the third grade reading program evidenced no
ffect, or possibly, a slight positive one, while the fourth grade
nath program exhibited clear negative gains (see Chapter 5).
Analyses of posttest subscales might make the interpretations of
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the reading program less equivocal or the negative gains of the
math program more specific.

Two posttest subscales that measure vocabulary and compre-
hension were available for the reading analysis. Three subscales
measuring computation, concepts, and agplications were avail-
able for the math data. The sample size, mean, variance,
skewness, and kurtosis for all five measures are shown in Table
3.1. A four-step polynomial regression model as described in
Chapter 5 was used for the analyses. For the third grade reading
program, the bivariate plots are shown for the vocabulag
subscale in Figure 3.1 and for the comprehension measure in
Figure 3.2. For the fourth grade math program the plots for the
computation, concepts, and applications subscales are shown in
Figures 3.3, 3.4, and 3.5, respectively.

The estimates of gain and their standard errors are shown for
each step in the analysis in Table 3.2. Both reading subscales
show a similar pattern of gains across steps. On the basis of the
analysis, we would conclude that there is no clear program effect.
Although inspection of the graphs provides some evidence for an
effect, assuming a true linear relationship, there is some evidence
for slight curvilinearity especially at the lower end of the
program group Scores. This could be due to a floor effect or
chance level problem.

TABLE 3.1

Descriptive Statistics for Posttest Subscales in Providence, RI
Skew-
N Mean Variance ness Kurtosis
i rad din
Vocabulary 488 341.15 2905.40 089 -.129°
Comprehension 488 356.37 5078.55 .296 .806
Fourth Grade
Mathematics
Computation 537 386.10 1989.51 -290 -.391
Concepts 537 386.91 3467.97 .180 -.266
Applications 533 379.29 4801.45 -073 -.137
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PROVIDENCE SUBSCALE ANALYSIS
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Figure 3.1 Regression-Discontinuity with a Reading Pretest and Vocabulary Posttest

The analyses of the math subscales are more illuminating. The
only measure that shows the consistent negative gains across
steps is the concept subscale. Since similar gains were detected in
the analysis using the total posttest math score, one might
conclude that they can be attributed primarily to this subscale.
The implication is that Title I students in that program lose the
most ground (relative to comparison students) on conceptual
mathematical skills and that increased attention to this aspect of
instruction may improve future program results.
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Figure 3.2 Regression-Discontinuity with a Reading Pretest and Comprehension
Posttest

One might wish to look at other postprogram measures such
as the self-esteem of students and estimate the effects of the
program on these constructs. Other variables useful in “process”
evaluation or to examine potential threats to the major analyses
could be considered, such as attendance rates, migrancy, and so
on. Just as the assignment variable can be a composite, there is no
reason why the posttest cannot be comprised of several measures.
One might wish to develop indices related to program effect and
use these as the postprogram measures.

A major question of interest in evaluation concerns whether
the effects of the program are sustained over extended periods. In
this regard, it would be useful to look at the posttest 2 or 3 years
removed from the program. Generally, it would be beneficial in
most evaluations to encourage the use of the regression-disconti-
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Figure 3.3 Regression-Discontinuity with a Math Pretest and Computation Posttest

nuity design for the estimation of program effects on more than
simply a single outcome measure.

AGGREGATION VARIATIONS

Many variations of the regression-discontinuity design for
aggregated data are discussed throughout this work. Sometimes
the aggregation is in terms of the unit of analysis as when the.
design is applied to a higher level of allocation formula (e.g.,
when allocating from the federal government to the states). At
other times the analysis can be performed on aggregated data,
such as means for various units of analysis. Thus, if one is
looking at the effects of Title I instruction at the school level one
might use an estimate of the mean reading achievement score for
each school. The use of the regression-discontinuity design on
aggregated data is discussed in an example given by Boruch
(1973) on the effects of medicaid funding on the number of
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Figure 3.4 Regression-Discontinuity with a Math Pretest and a Concepts Posttest
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TABLE 3.2
— Estimates of Gain and Standard Errors, Posttest Subscales,
g £ Providence, RI
g 2 > =
% 8 & Step B, SE(By
B X
Reading Vocabulary Subscale, Grade 3
B 1 27.02 5.59
2 14.36 6.32
3 22.66 8.40
5 o 4 -1.00 10.52
Reading Comprehension Subscale, Grade 3
8 1 31.94 8.21
) 3 2 19.95 9.38
I, 12 N 3 9.47 1247 .
2 g g 4 -7.48 15.79
) 5 g
B S | K Math Computation Subscale, Grade 4
8 E - 15 1 -5.41 5.04
G E 8 o 2 -13.65 6.03
5 o E % 3 5.61 7.96
a B ® 1 4 -12.03 9.93
B g EEE : dE |2
: o c |2 Math Concepts Subscale, Grade 4
8 of Be o g El& 4
3 E i T |g 1 -8.79 6.78
= G - 2 -28.46 8.02
EEE Bg®° < 3 -29.98 10.76
x -
o ;;i % g o) E 4 38.93 13.48
X XxXxx * 1B |- Math_Application 4
%, - £
x % x 3 1 13 7.10
x x > 2 -21.08 8.39
< x £ 3 —4.64 1.17
g 4 -21.21 13.95
§
2
. , . . . . s |2 |
2 2 ) ﬁ s ,g physician visits that are made. The data for this analysis was
- % taken from previously published data on the impact of medicaid.
1S311S0d SNOILEII1ddy « The assignment measure was an indicator of income divided into
9 six family income levels. Only families at the lowest of the six
g income levels qualified for medicaid. The dependent measure
& consisted of the mean proportion of physician visits (to families)
per year. Thus, the entire database consisted of only six values,
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one average describing the frequency of physician visits for each
income level. While one might expect a loss of statistical power

when operating with such small sample sizes, the loss may be

offset when working with data that is aggregated across large
numbers of individual units (such as nationally aggregated data)
by the greater stability or reliability that one genlerally expects
with aggregate information. )

POST HOC ANALYSIS

The regression-discontinuity design would appear to have
special advantages for conducting analyses “after the fact,” that
is, on a post hoc basis. There are several reasons why post hoc
analysis with this design is promising, especially for social
programs that are allocated on the basis of a formula as described
later. First, it is often the case that the data for these programs,
that is, the pre- and postprogram measures, are routinely
collected by government agencies. Even in cases where this data
is not collected routinely, it is often possible to construct
appropriate indices that can be used. Second, this data is often
readily accessible in the form of government documents or
computerized magnetic tapes. Often, the major problems that
will arise concern locating and accessing this data and determin-

‘ing its quality (Trochim, 1981). Third, it may be possible to

conduct a regression-discontinuity analysis even if the allocation
formula does not require sharp assignment in terms of a cutoff
score. Chapter 5 includes a description of how an analysis of a
“fuzzy” regression-discontinuity design might proceed.

SUMMARY

The purpose of this chapter was to demonstrate the versatility
of the regression-discontinuity design. If the design is eventually
to be used more widely there will have to be a greater recognition
on the part of researchers of when a setting is amenable to its use.
In the early stages of design selection, one of the first characteris-
tics one should look for is whether the treatment or program of

A
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interest is to be given out on the basis of need or merit. If so, then
it is important to examine how the allocation decision is to be
made, most especially, whether a cutoff point on some indicator
(or a cutoff interval, multiple cutoff points, etc.) will be an
acceptable criterion. If a cutoff strategy is appropriate _for that
setting, one next needs to determine whether the assignment

variable will be on a continuous scale or whether it will have only

a few discrete values. Obviously, one needs sufficient variability
on this measure in order to estimate regression lines adequately.
Finally, one needs to have at least one dependent measure that
has been collected for both program and comparison cases, and
that is presumed to reflect the effects of the independent variaPle
under study. Here, restrictions on scale are less critical than w1.th
the assignment variable. For instance, regression procedurc?s exist
(i.e., logit and probit models) that can accommodate dichoto-
mous measures of the “success-fail” type.

When the circumstances listed above hold for a given setting,

there is a strong possibility that some variation of the regression-

discontinuity design will be feasible. Greater creativity apd
recognition of feasibility on the part of the research comm.unfty
should assure wider application of the regression-discontinuity
design in the future.

e e v b
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Regression-Discontinuity
and Allocation Formulas

The previous chapters show that the regression-discontinuity
design is appropriate for the evaluation of social programs that
are given out on the basis of need or merit as determined by a
cutoff value or values on some quantitative assignment measure.

Government_agencies, most_especially at the federal level,

alf‘ate bllhons of dollars each year for programs that are
desngned to address’ social problems in cducatlon, health, crimi-
nal justice, and other areas. In most cases, program resources are
allocated, at least in part, bqged on some type of formula. Very
often, the formula has a cutoff structure that determines the level
g_f’z_aﬂgcatlon to different rec1p1ents For instance, funding for an
antipoverty program might be given on the basis of quantitative

records indicating the percentage of people below the official

Ex o ad
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poverty level of income or the percentage of people on unemploy-
ment. Educational programs might be given to those who fall
below some value on national achievement tests. Housing money
might be allocated to localities based on housing start rates or
levels of real estate taxes collected.

Probably the greatest potential of the regressioh-discontinuity
dures for allocating social resources in order to evaluate their
effectiveness. A review of the federal grant system may turn —UIT
programs that already meet the basic requirements of the
regression-discontinuity design. More likely, such a review would
indicate a large number of programs that could, with minor
modification, be amenable to regression-discontinuity analysis.
This chapter is a first step in such a review. A typology of federal
grants is presented along with some discussion of the allocation
formulas that are typically used. Following this is a discussion of

.several more dctailed examples of programs which use formulas

and the issues involved in using the regression-discontinuity
design to evaluate them. Finally, the major problems in coupling
the regression-discontinuity design with existing allocation for-
mula structures are discussed. ’

TYPES OF FEDERAL GRANTS

The grant system can be divided generally into three types of
grants, the typology primarily dependent on the degree of
intended specificity for the use of the funds. The first type of aid,
General Revenue Sharing (GRS) has the fewest spending strings
attached. Funds from GRS are allocated to local governments by
formula and can be spent on whatever the local government
considers necessary. Therefore, in some communities, GRS
money is used to defray the costs of necessary municipal services
like police and fire protection while in others it is directed to
§;ervices that the community would be hard pressed to provide on
its own, like social services and aid to the elderly.

The second general type of grant is known as the block grant.
In 1980, there were five major block grants: the Partnership for
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Health, the Omnibus Crime Control and Safe Streets Act,
Comprehensive Employment and Trainirg Act (CETA), the
Housing and Community Development Act, and the Title XX
Social Services Act. Funds for these grants can be spent on a
wide variety of programs, as long as they can be justified in terms
of the intent of the act. Therefore, while they are more specific
than GRS, they are not as narrowly defined as the third type of
grant—categorical aid.

Over the past decade, the largest number of federal grants (442
in 1975) were categorical, that is, grants where expenditures are
confined to a specific category or type of program. Furthermore,
the categorical grants can be divided into two categories: formula
or project. Generally, with formula grants (146 in 1975) the
funds were allocated from the federal government to smaller
governmental units by means of a formula. Project grants (296 in
1975) are open for proposal bids. Funds are given out based on
some judgment of the acceptability of the proposals received.

Formulas may be used to allocate resources at various steps or
levels in the process. First, they are often used to allocate money
from the federal government to the major recipient, most often a
state. In turn, a second level of allocation may be set up to
disperse funds within each state to the local government. There
can, in some cases, be additional levels of allocation from local
governments to subunits. The procedures used to disperse funds

for Title I provide a good illustration of a multilevel allocation -

system. Here, funds are first allocated to the states and territo-
ries, then to school districts (often coterminous with county or
parish boundaries), then to individual schools within the district,
and finally to the programs that serve the students. At each level
of allocation, a variety of formulas incorporating different
measures may be used. These can include demographic Jvariables,

measures of need such as an index of poverty or socioeconomic

status, or measures of achievement.
The use of formulas for allocation is not confined to the

formula-based categorical grant. For example, GRS and several

"of the block grants (e.g., CETA) allocate funds by formula. In
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addition, many of the categorical project grants, after allocating
funds on the basis of proposal awards, require or allow the use of
a formula in the next level of allocation.

A useful distinction can be made between allocation formulas
and eligibility formulas. An allocation formula is used to disperse
funds from one level of government to another. An eligibility
formula is used to screen the potential recipients of the program
or funds. Medicaid, for example, makes use of both types. Funds
are allocated to states on the basis of the formula relating state
and national per capita income. Beneficiary eligibility is deter-
mined by a separate formula based on age and disability. A
similar distinction can be made for the allocation procedures
used for Title I. The final stage in the allocation process is to
determine eligible participants. Thus, in Title I, the use of a
cutoff score on an achievement test can be considered an
eligibility formula that forms the last step of the funding
allocation process.

In most cases, it is Congress who clearly and specifically states
the allocation formula and the factor weightings. Several classifi-
cations have been offered of the types of variables used in
allocation formulas. One group (ACIR, 1978) suggests three
major types of measures: those related to population, financial
need, and program need. Specific measures are used in different
ways depending upon the grant. Measures related to population,
for example, can be used as continuous measures or as “‘qualifi-
ers.” Thus, the allocation of funds could be based on the number
of persons residing in each defined geographic area (e.g., county,
city, school district), or funds could be dispersed to all areas
having greater than a specific percentage of the national popula-
tion (e.g., urban areas). Measures of financial need are usually
related to income. For instance, funds could be dispersed on the
basis of the per capita income in a geographical area. Program
need is sometimes reflected through a measure of income and at
other times is a more direct measure of need. For example, a
program for boating safety might use the number of vessels
registered while a medical aid program might rely on estimates of

T
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the number of available hospital beds. Sometimes population or
demographic measures are presumed to reflect program need if
only because they tend to define the constituency of interest.
_Thus, funds for an adult education program might be restricted
on the basis of the number of persons over 18 years of age.
Another classification of formula variables (U.S. Department of
Commerce, 1978), divides the types of measures into the
categories of need, capability, and effort. Here, need refers to
population and demographic measures as well as more direct
indicators. Capability refers to the amount of revenues that a
local or state agency might be expected to provide from their own
taxes and income. Effort relates to the amount that is already
being spent for a given program from nonfederal sources.
However, these measures are classified, it is clear that quantified
indicators are often used in the allocation process.

The formulas that are used differ considerably in structure. As
an example, one can consider the formula that is used to allocate
GRS funds. The formula is essentially a ratio of “effort” (the
taxes collected) to a measure of ‘“‘capability” (per capita income)
multiplied by total population (that is presumably reflective of
need). Generally a given variable will be used either directly in
the formula or as a “quantifier” or “constraint.” These are used
to define the target populations and/or to protect against sudden
fluctuations in allotment from one year to the next. One example
of this can be seen in what is commonly termed a ‘“hold-
harmless” provision. Here, funds are allocated in a given year by
means of a formula, but any recipient who does not qualify for
the current year and who received funds in the previous year may
be allowed to continue receiving funds or to have these phased
out gradually over a period of several years. Provisions of this
nature are included because of political considerations or a desire
to provide continuity in the programs that are offered from one
year to the next.
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EXAMPLES OF ALLOCATION FORMULA DESIGNS

It is apparent that many of the formulas used to allocate funds
meet one or more of the requirements for the regression-
discontinuity design. Many rely on continuous quantified meas-
ures or combinations of measures to determine the amount of
funds that are allocated: Some specify a cutoff value for
allocation or eligibility, while others have multiple cutoffs or
“cutoff ranges” within which the amount of funds varies
continuously.

To illustrate how the regression-discontinuity design could be
coupled with allocation formulas consider the allocation of Title
I funds from the school district to individual schools. Here, a
measure of poverty (presumed also to be reflective of educational
disadvantage) is used. This might be a measure like the
percentage of free lunches that are served in each school or the
number of children in families receiving AFDC. Schools are
ranked by this measure and designated as eligible for Title I funds
on the basis of a cutoff. Clearly, several of the requirements for
the regression-discontinuity design are met here. The preprogram
measure can be the estimate of free lunches and schools divided
into “program” or ‘“‘comparison” groups solely on the basis of a
cutoff score. The postprogram measure could be an estimate of
average achievement test scores for each school.

This example illustrates some of the difficulties that will arise
when trying to couple the regression-discontinuity design with
allocation formulas. One problem concerns the fact that not all
eligible schools receive the same amount of funds and only a
small percentage of a school’s population will receive services. As
a result, a postprogram measure that reflects the average
achievement for the school will only be partially reflective of the
effect of Title I services. While this might appear to be a serious
difficulty, it is simply a variation of the problem that normally
occurs in trying to estimate the degree of program implementa-
tion. Just as the amount of service given to each student will
differ even within the same Title I program and classroom, we
expect that the amount of Title I program services differs from
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school to school. It would be necessary in this hypothetical
design to estimate a “‘weighting” factor that indicates the degree
of Title I service provided at each school. This is analogous to
estimating the amount of service that a given student receives.
For example, one might consider the percentage of students in a
given school who are enrolled in a Title I program as a suitable
covariate in the analysis.

A second example can be constructed to illustrate how the
regression-discontinuity design could be used to evaluate the
Airport Development Aid Program (Public Law 91-258). The
objectives of this law are “to assist public agencies in the
development of a nationwide system of public airports adequate
to meet the needs of civil aeronautics” (OMB, 1979). Generally,
funds are used for “constructing, improving, or repairing a public
airport or portion thereof.” All public airports are eligible for
funds, but the level of funding differs depending upon a cutoff
value on a pre-funding measure. The measure used to determine
the amount of funding is the number of enplanements at each
airport. The federal government will pay not more than 75% of
the cost of a project at an airport that enplanes one-fourth of 1%
or more of all passengers enplaned at such airports, and will pay
80% for projects at all other airports. Thus, the cutoff point is
“one-fourth of 1% of all enplanements.

This example illustrates a different set of difficulties than the
previous one. Here, one is not testing the difference between a
“program” and ‘“‘control” group, but rather between two levels of
funding. In addition, the levels of funding are not all that
different and one might not, depending upon the program of
interest, predict that a difference of 5% in the funding level will
result in differences in post-funding measures. In this example,
the preprogram measure is the number of enplanements. The
airports are divided into different levels of program by means of a
sharp cutoff value on this measure, and the postprogram measure
might also be the number of enplanements in a subsequent year
or some measure related to airport activity. As in the previous
example, it would be useful to search for “weighting” variables
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that reflect the amount of funding or program implementation at
each airport.

Anothei i !~ can be constructed using the regression-
discontinuity design i conduct a post hoc evaluation of the
Comprehensive Employment and Training Act (CETA) pro-
grams. The objectives of CETA programs are

. v
to provide job training and employment opportunities for
economically disadvantaged, unemployed, and underemployed
persons to assure that training and other service lead to
increased earnings and enhanced self-sufficiency by establishing a
flexible decentralized system of Federal, State and Local programs.
(OMB, 1979)

The allocation formulas for the CETA program were extremely
complicated due to a large number of qualifiers and exceptions.
" In addition, the grant was divided into six major parts or “Titles”
and each part had its own set of formulas. Of special interest here
is Title VI, which provided public service employment in areas of
high unemployment. The allocation of funds for Title VI
included the following provisions:

Not less than 85% of the funds appropriated are allotted as
follows: (a) 50% in proportion to each area’s share of all
unemployed persons; (b) 25% in proportion to the area’s share of
all unemployed persons in excess of 4.5% of the labor force; and
(c) 25% among areas of substantial (6.5% for three consecutive
months) unemployment as defined in the CETA regulations. (OMB,
1979)

This formula appears to have two cutoff points—one at 4.5%
unemployment and the other at 6.5% unemployment. Those
areas below 4.5% unemployment received the least amount of
funds, those above 6.5% received the most, and those between
the two cutoffs were allocated funds on the basis of a separate
formula. Here, we have a situation analogous to the airport
development grant where we are dealing with different levels of
the program or funding. The preprogram measure would be the
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indicator of unemployment, units are assigned to groups on the
basis of the two cutoffs, and postprogram measures of program
implementation could be incorporated as covariates.

These three examples serve to illustrate how the regression-
discontinuity design could be coupled with allocation formulas.
All have in common the existence of a continuous quantified
preprogram measure and a specified cutoff value or values that
are used, at least in part, to determine program funding or
eligibility. Many of the problems of implementation discussed
earlier will also tend to occur in these applications. In addition,
problems related to the context of federal allocation procedures
will also occur and are discussed in the next section.

PROBLEMS IN ALLOCATION FORMULA DESIGNS

Every research context and, in fact, every federal grant, is
likely to pose its own set of problems for any methodology. In
this section, the context of federal allocation formulas is exam-
ined generally for likely potential problems for the application of
the regression-discontinuity design. It is important to keep in
mind that the grants administered under the federal government
cover an impressive range of purpose and form and that the use
of the regression-discontinuity design or any other should be
examined carefully before it is applied to any particular project.

A major problem in using the regression-discontinuity design
coupled with allocation formulas concerns the number of units
that are available for analysis. The first level of allocation in
many grants is from the federal government directly to the state
and trust territories. It would be difficult indeed to have
confidence in an analysis based on between 50 and 60 data points,
although the generally better measurement properties of state-
level aggregated data could allow for a reasonable analysis. In
many cases, the state subsequently allocates funds tosmaller
units of government within their boundaries. This may or may
not be done by a predetermined formula. Often, the states are
given guidelines for this second level of allocation but are not
required to restrict themselves to a predetermined formula. It
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will sometimes be the case, therefore, that there will be too few
units to justify a regression-discontinuity analysis. The possibility
of “skipping” an allocation level and doing an analysis on

substate units will often be ruled out because of inconsistencies in

formulas or data between states. \

A second problem that will often occur concerns the distribu-
tions of the variables that are available for the analysis. The
statistical procedures used to analyze the regression-discontinuity
design for the most part assume that the distributions for the
variables are normal or that they can be transformed into
normally distributed variables. Previous experience indicates that
many of these variables, especially those related to income, are
not likely to be so distributed. While procedures for analyzing
nonnormal distributions are being explored (Sacks & Ylvisaker,
1976), distributional problems may minimize the utility of the
design for certain projects at this time.

Federal funds are often dispersed under certain *“‘matching”
considerations. In these cases, the state and/or local government
is required to provide a certain percentage of the funding. The
total amounts of funds which are available are determined in part

by these local governments. The most common matching ratio is.

50-50, or half federal funds and half funds from other sources.
Problems generated by matching provisions may be able to be at
least partly accounted for in regression-discontinuity analysis by
the inclusion of a variable that measures the level of program
funding in each unit.

Another potential difficulty concerns the fact that, at least at
certain levels of allocation, there are no comparison groups.
Especially when the federal government allocates to the state it is
usually thé case that few if any states are denied at least some
funding. This is probably due in part to political considerations.
We are left, in the absence of comparison groups, with a strategy
that attempts to test differences between various levels and types
of programs rather than between the program and no program at
all. This was illustrated in two of the hypothetical examples
outlined above.
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Numerous constraints or exceptions are often allowed for a
given formula. These are dictated by the political necessities
involved in order to get the bill through Congress, but neverthe-

- less pose some difficulty for the application of the regression-

discontinuity design. Sometimes these take the form of allowing
the director of the appropriate federal department to have certain
discretionary powers in allocating funds while at other times they
are evidenced by the inclusion of specific subgroups who would
not necessarily qualify by means of the formula but should be
included anyway. These exceptions result in a class of misassign-
ment and exclusion problems similar to those discussed Chapter
7. The same approaches that are advocated there could be
applied here. This might include separate analyses for different
subgroups of interest to determine whether estimates of program
effect differ, as well as exploratory analyses designed to assess the
degree of this difference.

Another problem that holds some similarities with problems
evidenced in Title I evaluation concerns the existence of compet-
ing programs to which a particular governmental unit could
apply if they do not get federal funding from the government.
Thus, state and local governments may already have their own
programs for airport development, compensatory education, or
manpower training. It may even be the case that these programs
exist primarily to provide funds to governmental units that are
denied funds from the federal government because of their
placement by the formula. When similar programs exist for
purposes of equalizing funding to governmental units, these can
act to degrade a comparison between groups or between different
levels of the program. 7

A variety of measurement problems can occur depending upon
the program and the variables that are used. A major problem
results from the fact that many of the variables used in allocation
formulas, especially those related to population and income, are
obtained from census data that is collected every 10 years.
Sometimes an attempt is made to provide updated estimates, but
these are often based upon fallible prediction models and must be
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considered suspect. Some work has been done on developing
continuously measured indices, such as the cost of living index
and the unemployment index, and such developments should

improve measurement qualities of the regression-dxscontinuity
design. '

Another problem stems from the fact that, the regression-
discontinuity design requires the pre- and postprogram measure-
ment of comparison subjects or units. It will often be the case
that the information of greatest interest when determining the
effect of a federal program will only be collected for the program
group. For example, in the case of medicaid programs, relevant
indicators of the effects of medical care may only be collected (or
even if collected, may only be aggregated) for the program group
because that is the group of prime interest. An analysis may be
possible at a higher level of aggregation (e.g. general health
indicators), but this may not be the primary issue of interest.

A federal grant is simply an offering from the federal
government to other governmental agencies Or individuals.
Participation in programs or even application for such programs
is by no means mandatory. There are many cases in which an
eligible unit will not apply for or receive the program. This may
occur if the governmental units recognize in advance that they
will not qualify, if they are unwilling to submit to federal
requirements and paperwork, of if they are simply unaware of the
existence of the program. In any event, this self-selection process
is likely to have an effect on the constitution of the groups of
interest and, subsequently, on the analysis itself.

One of the most difficult problems in applying the regression-

~ discontinuity design to allocation formulas concerns the place-

ment of cutoffs and the assignment to conditions. Given the
political factors that it must consider, Congress is hard put to
develop formulas that are simply constructed just for the sake of
expediency or methodological clarity. In addition, it is not clear
that the sharp cutoff for assignment that is a requirement for the
basic regression-discontinuity design is always politically desir-
able or feasible. To get an idea of the difficulty involved in
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decisions concerning cutoff points, consider a passage from the
Report of Statistics for Allocation of Funds (U.S. Department of
Commerce, 1978):

Undesirable discontinuities may be introduced into an allocation
system by cutoffs, especially by sharp cutoffs. For example, if an
area must have an unemployment rate of 5% before it can receive
any funds, a very trivial error in the estimation of the
unemployment rate can easily throw an area from under 5% or
from over 5% into the other group. Here a very small error can
make a tremendous difference and lead to continual complaints
about the accuracy of the data on the part of the govemmental
units which feel the cutoff operates to their disadvantage.

A common solution to controversies over cutoffs is to provide
alternative cutoffs and to permit each jurisdiction to select the
formula which is most advantageous. While this works moderately
well, it has the disadvantage of making it difficult to predict in
advance (and budget for ) the amount required for the process if
no fixed overall sum to be allocated is specified. 1f no overall sum
is specified but each jurisdiction may choose which formula it will
use in determining its share (with computed amounts totaled over
all competing jurisdictions sO that the per cent of the total
allocated to each jurisdiction can be determined) one gets 2 floating
cutoff point where the amount one jurisdiction gets depends upon

the decisions made by other jurisdictions.
—_

For eligibility cutoffs it is almost always possible to devise a
formula such that there is a gradual approach to zero (or to some
cutoff point lower than the existing absolute cutoff). Here, small
errors in the data lead only to small changes in the allocation and
the tendency to prolonged (and insoluble) arguments over minor
errors is removed. Of course, major errors will and should continue
to be the subject of controversy but one will be spared the waste
of time and effort involved in the use of a formula which requires
data of unattainable accuracy.

The use of a formula based on a continuous allocation of funds
implies, at least for some cases, that there will be multiple cutoff

points. All units scoring below the lower cutoff point get one
level of the program, those scoring above the highest cutoff point

i
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get another level, while all those scoring between these two get a
continuously varying level of the program. This was illustrated in
the example above for the CETA program. The regression-
discontinuity design or a variation thereof could be appropriate
for these cases. What must be avoided, if regression-discontinuity
is to be used, is the use of a formula that allocates continuously
different levels of funding across the entire range of the
preprogram measure. As long as there are clear cutoff points that
differentiate between the level of funding or program in adjacent
groups (as measured on the preprogram variable), one expects
that if these levels of treatment or program have an effect this
will show up as a discontinuity in the relationship between the
pre- and postprogram measures.

We can see from this discussion that there are a large number
of potential problems that can act to degrade the analysis of
program effect by means of the regression-discontinuity design.
Nevertheless, the sheer magnitude of federal domestic aid, the
need to evaluate the effectiveness of these programs, and the
potential usefulness of the regression-discontinuity design in this
regard, warrants a more detailed exploration of the appropriate
uses for the design in this type of context.

The Statistical Analysis
of the
Regression-Discontinuity
Design

Up to this point, this volume has concentrated on design issues of
regression-discontinuity. The present chapter focuses instead on
the statistical analysis of data obtained using such design
structures. The analytic strategy outlined in the first part of this
chapter is not new—it simply involves the application of the
General Linear Model to the data at hand. However, there are
some issues of importance concerning how to best apply this
general model in regression-discontinuity contexts.

Experience with the use of the regression-discontinuity design,
especially in compensatory education contexts, indicates that a

121
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major problem in the implementation of the design involves
adherence to the assignment by a cutoff value. The last section of
this chapter outlines an analytic strategy that holds promise for
such “fuzzy” regression-discontinuity situations. If further stud-
ies of this analytic approach (and related strategies) confirm their
appropriateness, the range of applications of the regression-
discontinuity design would be greatly enlatged.

A STATISTICAL MODEL
FOR REGRESSION-DISCONTINUITY

A good deal of work has been devoted to the issue of how one
should analyze the regression-discontinuity design when the
cutoff criterion has been adhered to. Sween (1971), in a
dissertation on the topic, advocated the calculation of separate
regression lines for the program and comparison groups and the
estimation of the program effect by means of a t-test of the
difference between the regression lines at the cutoff. In several
papers, Boruch (1973, 1974) and Boruch and DeGracie (1975)
summarize a variety of potentially useful analytic models and
distinguish cases where the pretest variable is random or fixed,
assignment is sharp or “fuzzy” (i.e., the cutoff criterion is not
followed perfectly) and the groups come from the same normal
distribution or comprise separate ones. The recommended model
for a commonly expected situation, that is, when assignment is
sharp and the groups are thought to represent a single popula-
tion, is suggested in the work of Chow (1960) and consolidated in
a more general model by Gujarti (1970). Reichardt (1979) and
Campbell, Reichardt, and Trochim (1979) discuss this general
model within the context of regression-discontinuity specifically.
A similar approach is outlined more recently in Judd and Kenny
(1981). The ESEA Title I evaluation context has resulted in
papers by Echternacht (1978) and Echternacht and Swinton
(1979) that discuss a number of approaches that might be
employed when there is evidence for a curvilinear relationship
such as might be caused by floor or ceiling effects. Analytic issues
were also considered by Berk and Rauma (1983) who present a
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regression-discontinuity analysis in the area of criminal justice.
Econometricians and statisticians have shown some interest in
the design. Related discussions can be found in Spiegelman
(1977, 1979), Rubin (1977), and Goldberger (1972). Some work
on a general model appropriate for the nonlinear case or when
distributions are not normal has been carried out by Sacks and
Ylvisaker (1976).

The analytic model presented here is similar to many of the
above procedures and has been described in Trochim (1980).

~ Given a pretest, x;, and posttest, y;, the model can be stated

formally as follows:
Vi = Bo + Bixi + Bz + Boxi zi + . ..

*s s,
+ Boaxi+ Bz + ¢

Where:

x; = preprogram measure for individual i minus the value of the cutoff, x,
(e, X, = X — Xo)

y;, = postprogram measure for individual i

7, = assignment variable (1 if program participant; 0 if comparison partici-
pant)

s = the degree of the polynomial for the associated X

B, = parameter for comparison group- intercept at cutoff

B, = linear slope parameter

B, = program effect estimate

B, = parameter for the s™ polynomial or interaction terms if paired with z

= random error

The major hypothesis of interest is:
Hpy: ;=0
tested against the alternative:

H;: 3,# 0



—er—-
.

124 RESEARCH DESIGN FOR PROGRAM EVALUATION

There are several key assumptions that must be met for this
model to be appropriate:

1. The cutoff criterion must be followed. There can be no misassignment
relative to the cutoff score. The analysis of *“fuzzy"” regression-
discontinuity designs (where a strict cutoff is not followed) is
discussed briefly below.

2. The true pre-post distribution must be describable as a polynomial in
x. If the true model is instead logarithmic, exponential, or some other
function, this model is misspecified and the estimates of program
effect are likely to be innacurate. If the data can be transformed to a
polynomial distribution prior to analysis, the model above may be
appropriate. It should be noted that this assumption is not necessarily
restrictive. Any functional relationship in the data can be described
sufﬁ_ciently by a high enough order polynomial function.

3. There must be a sufficient number of points in each group to enable
the estimation of regression lines. This is more important for the
comparison than the program group because it is the comparison
group function that describes the null expectation. The analysis of
cases where there are not enough points to estimate a regression line in
the program group is discussed below.

4. Both groups must come from a single pretest distribution. The cutoff
value divides this original distribution into two groups. The use of
groups that come from separate distributions (e.g., in a “post hoc”
regression-discontinuity where the two groups are distinct populations
such as two classrooms, one of which is for advanced placement
students and the other of which is for slow learners, thus resulting in a
“naturally occurring cutoff”) is considered below.

5. The program conditions must be implemented uniformly within each
group. The model assumes that all persons in the program group
receive the same “amount” of the program and those in the
comparison group receive no program. If the program is not
implemented or some comparison persons receive comparable treat-
ment, the model stated above will be misspecified and, consequently,
the results may not be valid.

It should be noted that the key to the analysis outlined above is
that the correlations between the preprogram variable and all
other possible regressors reduce to zero when partialled for the
group assignment variable. The reader is referred to discussions
by Goldberger (1972) and Judd and Kenny (1981) for more
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detailed consideration of this issue. One implication of this is that
any kind of model that uses the regression equation as an
argument (e.g., a logit model) will be appropriate. This is
illustrated well in the evaluation conducted by Berk and Rauma
(1983) that made use of both logistic regression and proportional
hazard analysis.

The general model estimates both main and interaction effects
as discontinuities at the cutoff. It is important to recognize that
this is accomplished by subtracting the cutoff value from each
preprogram score to create x;. This has the effect of moving the
cutoff value to the y-intercept point and improves the intcrpret-
ability of the coefTicients. As will be shown below, when this
transformation is applicd, the f}, term is both the y-intercept for
the comparison group regression line nnd the predicted y-value
for the comparison group at the cutollt From this, it follows that
f3,, the program main effect estimate, is the difference between
the two group regression functions at the intercept and at the
cutoff. The effect can be estimated at other pretest points (as in
Title I evaluation where it is also estimated at the program group
pretest mean) by subtracting the value of interest from the
preprogram scores to create xi' .

It is useful to examine the mechanics of this model to see how
it operates. Consider a case where the true function is linear, the
slopes in the two groups are equal, and there is a main program
effect. The true model can be written as:

yi = Bo + Bix; + Biz;

where the terms are defined as above. Using the general model
given earlier, the comparison group line is:

vi = Bo + Bixi
and the estimate of where this line intersects the cutoff is simply:

yc=BO

N S

A b
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because x; = O at the cutoff. The program group line for this
situation is:

i = Bo + lei. + B:

The estimate of .where this line intersects with the cutoff is:

Yp=ﬁ0+ﬁ2

The main effect is defined as the vertical difference between the
lines at the cutoff. This would again be:

Yp‘YC=(ﬁ0+BZ)‘BO
=ﬁz.

Thus, B, is the main program effect.
Now consider a case where the true function includes both a

main and interaction effect:
v, = Bo + Bixi + Bozi + Bixizi
Here, the comparison group line would be:
ye = Bo + Bixi
while the program group line is:
o = Bo + Bixi + By + B
The difference between these lines is:
vy - ve = B+ Bixt + B+ B - (B + Bix)
=B, + Bl

Here (3, is still the main effect of the program—the vertical
distance between the two lines at the cutoff. The interaction
effect is reflected in B, which can be interpreted as the difference
in slopes between the lines of the two groups. It is worth noting
that 3, is where the comparison group line hits the cutoff and
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that 3, can be interpreted as the amount that must be added to
this value in order to find the program group cutoff intercept.
Similarly, B, is the linear slope of the comparison group, and
therefore f; can be interpreted as the amount that must be added
to this slope in order to determine the slope in the program
group. _

The explanation extends to any order polynomial. For in-
stance, consider a more complex true function like:

yi = Bo + Bixi + Bz + Bixi + Baxiz

The comparison group line is:
e = Bo + Bixi + Box

while the program group line is:

Vo = Bo + Bixi + By + Bx® + Bux’
The difference between the lines is:

Vo = Ve = (Bo + Bix + B + Bixi® + Buxi”) -
By + Bixi + Bix”)
= B, + Bux

The main effect is again (3, but in this example there is no linear
interaction. However, there is a cubic interaction (a difference in
third-order function between the groups) that is estimated by Bs.

The significance of main and interaction effects can be
examined by constructing a confidence interval around the
particular . For instance, a 959, confidence interval for the

main effect would be:

Clysg, = B, * 2SE(B,)

The fs and their standard errors are typical output from most
computerized regression analysis packages.
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MODEL SPECIFICATION

From the general model described above, one needs to select
that subset of variables (i.e., polynomial and interaction terms)
that describes the true functional form of the data. If the true
model is known, the specification issue is trivial—the correct
terms of the general model are simply used in the analysis.
However, the true model is seldom known in practice unless
extensive previous research or theory consistently point to a
specific functional form. Methodological strategies that might
help uncover the true model, such as the use of double pretests
(Boruch, 1978), are seldom applied. In most settings, the analyst
will have to rely on visual and empirical exploration of the data
in order to determine what the “likely” true model for the data
might be.

Hocking (1976) discusses five computational procedures that
are useful for subset selection: all possible regressions; stepwise
methods (forward and backward); optimal subset procedures;
suboptimal methods; and ridge regression techniques. For most
of these procedures, one usually defines selection criteria that are
used to determine whether a particular variable will be included
in the final model. Among the criteria that are commonly used
are the following: change in residual mean square; the squared
multiple correlation coefficient; and the total squared error. In
addition, if a stepwise procedure is used, one usually needs a
stopping criteria to help determine when an acceptable subset of
variables has been selected. The reader is referred to Hocking
(1976) for an excellent discussion of subset selection.

The choice of computational procedure and criteria for subset
selection should be guided by the goals of the analysis. Typically,
the primary goal in regression-discontinuity is to obtain an
unbiased and statistically efficient estimate of program effect.
This is perfectly achieved only if the subset of variables that is
selected from the general model exactly describes the true model
in the data. In practice, exact specification is hard to accomplish.
Hocking (1976) states, “The problem of interpreting the subset
information is complex. The question of whether any of the
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proposed criteria are effective in identifying ‘true’ variables is
difficult to answer” (p. 44).

If the selected model is not exactly specified, then it must be
either over or underspecified.’ A model is overspecified if it
includes all variables in- the true model along with additional
terms that are not in the true model. It is underspecified if it does
not include all the terms that are in the true model. Sween (1971)
and Hocking (1976) argue that parameter estimates will generally
be biased when the true model has been underspecified. Trochim
(1980) demonstrated with simulations that this was the case for
the regression-discontinuity design. An overspecified model, on
the other hand, will yield an unbiased estimate of program effect,
but this estimate will be less efficient (i.e., have greater variance)
than one obtained from an exactly specified model (Sween, 1971,
1977; Trochim, 1980).

To see this, consider again the data that was presented in
Figure 1.3. The model that generated the data included a single
linear term across both groups with an additive or main program
effect. If the linear and assignment variable terms of the general
model are the only ones selected for the analysis, the resulting
model will be exactly specified and the estimate of program effect
will be unbiased. If higher order terms are added to the model,
these new terms should be nonsignificant and the program effect
estimate should remain the same. However, because there are
more parameters in the model, one has fewer degrees of freedom-
available for estimating the effect as well as multicolinearity
between variables, and the standard error of the effect estimate
will be larger. Nevertheless, no pseudo-effect will result from
adding in the higher-order terms.

Consider next the null case for a true quadratic model as
shown in Figure 5.1. While this function might be unlikely in
practice, it provides a useful illustration of the pseudo-effect
problem. Here, one expects that first order models will yield
pseudo-effects while second order ones will not. If both linear
and quadratic terms are included, the model is overspecified. The
linear terms should be nonsignificant and the estimate of effect
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unbiased (although less efficient than with only quadratic terms).
If cubic terms are added, these should also be nonsignificant and,
again, an unbiased estimate is obtained.

The same logic can be extended to models of any order. If the
true function is quintic, analyses that underfit this function are
likely to yield biased estimates while analyses that include the
quintic term and any other terms will yield 'unbiased estimates
although these will be less efficient than an analysis that only
includes the quintic.

With this in mind, the rationale for subset selection in
regression-discontinuity is straightforward. If an unbiased esti-
mate of effect is desired, what is needed is an approach that
optimally yields a model that is exactly specified and, if not, one
which is overspecified. In practice, this will often be difficult to
achieve, in large part due to the high multicolinearity between
predictor variables as discussed below. Previous analytic recom-
mendations (Judd & Kenny, 1981; Trochim, 1980) rely on

pseudo-
effect

Figure 5.1 Pseudo-Effects Resulting from Fitting a True Quadratic Function with
a Linear Model
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overfitting of the likely true function and elimination of extrane-
ous terms using various criteria (e.g., r-square, significance of fs).
However, no single criterion or regression approach can guaran-
tee that the optimum subset will be selected. What is recom-
mended here is a broad-based multiple-criterion approach to
subset selection that requires that the analyst exercise consider-
able judgment in the model selection process. It should be
stressed that the following approach assumes that the analyst is
primarily interested in obtaining unbiased estimates of the
program effect even if some price is paid in terms of efficiency.

This approach begins, as do others, with a determination of
the “likely” pre-post relationship through visual inspection,
experience with the data, or other means. This “likely” function
is used as an initial guide in the analysis. The general model
outlined above is then applied to the data in a series of steps until
this likely function is overfitted by several terms. For example,
assume that inspection of the bivariate distribution or previous
theory indicates that a quadratic or second-order model is likely.
In the first step of the analysis, one might only fit the linear term,
x;, and the assignment variable, z,. Theoretically, this model
would be underspecified and the estimate of effect would be
biased. In the second step, one could add the first-order
interaction term. This should also be underspecified. The third
step would add the quadratic term, and the fourth its interaction.
If the analyst was correct in guessing the true function, the model
should at this point be at least overspecified and, perhaps, exactly
specified. In subsequent steps, higher-order terms can be added
one by one until the analyst is fairly confident that the model is
overspecified.

Several indicators can be used to help verify the appropriate-
ness of the likely true function or lead to selection of another.
Plots of estimates of gain, r-squares, and residual mean squares
across steps should evidence some change at the step where the
model becomes exactly or overspecified. In general, estimates of
gain should stabilize, r-squares should level off, and residual
mean squares should reach their minimum at that step. Plots of
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regression lines for various models should also be examined.
Higher-order models that “explode” outside the pretest data
range may fit the data well but be difficult to explain in any
substantive sense.

If the evidence is compelling, the analyst can be satisfied to
accept the likely function as an appropriate model. In the absence
of such evidence, it is generally preferable to report multiple
estimates, or, if a single estimate is required, to select one from a
reasonable higher-order step in the analysis. In certain cases it
may be possible to eliminate some lower-order terms while
retaining higher-order ones. Such exclusions should be made
with great caution because of the presence of multicolinearity and
the possibility of underspecification and consequent bias.

The central tension in this analytic approach is between over
and underspecification. As more terms are added to the model
the potential for bias is reduced, but so is the precision of the
estimates. Furthermore, higher-order models will ultimately fit
the data well, but will often yield functions that are clearly
absurd in any substantive sense. Typically, models higher than
second or third-order will not be theoretically justifiable in most
social science arenas. If the analytic evidence supports a higher-
order model, one should suspect that the assumptions of the
general model may not be met, implementation difficulties may
have distorted the true function, or that outliers are dispropor-
tionately affecting the analysis. -

A major feature of the approach to subset selection outlined
here is that it is conservative. Deliberate over-fitting of the
“likely”" true function will tend to lead to unbiased estimates that
are somewhat imprecise. If the true model is a low-order
polynomial, the imprecision should not be too great. With
higher-order true models the efficiency may decline considerably
because of the tendency of this approach to retain polynomials of
lower order than in the true model. This feature, however, makes

some intuitive sense. In many research contexts there is reason to
consider more complex distributions as less likely and often,
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indicative of measurement problems, poor data quality, poor
research implementation, and so on. ’

The lack of a more definitive analytic strategy that can be
rl?ech'fmically followed may be unsettling to some analysts. This
51tu.atlon reflects inherent uncertainties in the data, not in

‘statlsticg ‘Short of divine revelation of the true func’tion, no
mechanistic approach can guarantee its detection. As a result, we
must rely on statistical indicators and good analytic judgmen’t to
help select a model that is efficient and that minimizes the chance
of bias.

Fma.lly, a word about graphics is warranted. The quality of a
regresgon-discontinuity analysis is to a great extent dependent on
the ability of the analyst to determine the likely true functional
fO{m. Plots of the data are obviously essential for accomplishing
thls.well. For example, it is useful to plot regression lines
obtained at each step in the stepwise procedure. These plots
sh.ould not be confined only to the range of the obtained data
H}gher-order polynomial models that fit the obtained data weli
will often be clearly absurd when extended beyond the range of
the Qata. One will also often get a clearer picture of the pre-post
relationship by plotting posttest means for various size intervals
on the: pretest. Outliers that may be distorting the regression
analy§|s might also be examined through plots of influence
fu.nctlons (Hampel, 1974; Thissen, Baker, & Wainer, 1981).
Riecken and Boruch (1974) state well the importance of graphics
for regression-discontinuity analysis when they say that one
should even ‘distrust the results if visual inspection makes
plau'sible a continuous function with no discontinuity at the
cutting point.”

DESIGN VARIATIONS AND ANALYTIC IMPLICATIONS

The model outlined above will be suitable for the analysis of
most basic regression-discontinuity designs as defined in Chapter
1. When the design is more complex, variations of this model
neefl ?o be devised. This section discusses a number of design
variations and some of their implications for the analysis.
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MULTIPLE CUTOFF POINTS

In some situations, one might wish to use more than one cutoff
valué for assignment. For instance, if one wished to compare two
programs and a control condition, two cutoffs would be neede‘d
to distinguish the three groups. This might be especially useful if
the program that was thought to be most powerful could be
applied to those most in need, the comparison condition to those
least in need, and the other program to persons falling between
these two groups on preprogram indicators. The analysis of such
a design follows from the general model outlined above. The
major difference stems from the need to indicate the assignment
to groups. Unlike, the two-group case, this situation requires two
assignment (z) variables. If the true pre-post relationship is linear
and there is no interaction effect an appropriate analytic model
might be :

yi = Bo + Bixi + Bzt +. Biz2, + ¢

where all terms are as before except for the two assignment
variables, z1 and z2 which could be defined as:

z1, = 1 if program 1; O otherwise

z2; 1 if program 2; O otherwise

In this model, 3, would be the estimate of the difference between
program 1 and the comparison group; B, would be the difference
between program 2 and the comparison group; and f,—f; would
be the program 1— program 2 difference.

In multiple cutoff situations, only one cutoff can be subtracted
from the pretest to create the x; term of the general model. As a
result, one must be careful when interpreting the regression
models. For example, if in the above analysis the cutoff that
separates the program | and program 2 groups is subtracted from
the pretest, then all estimates of effect are computed at that
pretest value. Thus, the program 1-comparison group difference,
(, would estimate the vertical distance between the lines of the
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two groups at the subtracted cutoff value. If it is desirable to
obtain different estimates at different cutoffs within the same
analysis, this can be accomplished by substitution in the obtained
regression equation.

The model specification issue also becomes more complex in
the multiple group situation. In effect, one has the equivalent of
several general models that must be specified. For example,
considering just first-order terms, it will be necessary to include
the interactions between z1 and x, and z2 and x. Assuming the
same number of cases as the two-group design, one will in general
have fewer degrees of freedom and greater pretest homogeneity in
the multigroup situation.

RANDOM ASSIGNMENT IN
REGRESSION-DISCONTINUITY DESIGNS

As mentioned in Chapter 3, the regression-discontinuity
design is usually recommended only if random assignment to
condition is not possible. Nevertheless, the two strategies can
each be enhanced in various ways by combining them within a
single study. Several analytic approaches for coupling the designs
are discussed here.

In some settings, reliance on a single inflexible cutoff rule may
be impractical or undesirable. For instance, teachers may feel
that test unreliability results in deserving students being on the
“wrong” side of the cutoff for placement into the program of
interest. Given that there may be difficulty in accepting the
assignment of cases close to the cutoff, it may be preferable to
replace the cutoff point with a cutoff interval and to randomly
assign to program within that interval. In the compensatory case,
for example, one would select two cutoffs—those scoring below
the lower cutoff would receive the program; those scoring above
the higher cutoff would be in the comparison group; and those
scoring between the two cutoffs would be randomly assigned. In
this situation, the randomized part of the design would not be
troubled by the functional form and model selection issues
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mentioned above because, due to the random assignment, the
same functional form can be assumed for the two randomized
groups and mean differences can be examined. The regression-
discontinuity portion of the design, while probably lower in
internal validity, enables generalization over a wider range of
pretest scores. ' ' .

The use of random assignment presents no fundamental
difficulty in terms of analysis. In fact, three separate analyses are
possible. First, one can look only at the cases within the random
assignment interval and use Analysis of Covariance to estimate
differences between groups. In terms of the general model stated
earlier, this would involve inclusion of the linear term and
assignment variable. Second, one could exclude the data within
the interval and analyze just the regression-discontinuity portion
of the design. Here, the interval would be treated as a cutoff.
Estimates of effect could be made at the mean or median pretest
value of the interval (by subtracting it from all pretest cases in the
analysis). Finally, one could analyze all of the data at once using
the general model and again estimating effect at the mean or
median within the cutoff interval. The redundancy in analysis has
some advantages. Model specification problems of regression-
discontinuity become less critical, statistical power will generally
be greater due to the incorporation of random assignment
(Goldberger, 1972), and institutional reluctance to randomly
assign all participants is reduced.

Random assignment can also be used effectively across the
entire pretest range to reduce the model specification problem.
Several intervals for random assignment can be constructed and
estimates of effect from these can be compared with overall
regression-discontinuity estimates at those points. Similar results
add credibility to the interpretation.

Typically, random assignment to two groups implies an equal
probability of assignment to program (i.e, p = .5) for any
participant, but this need not be the case. Instead of a single
cutoff interval, one could use several and have declining probabil-
ities of assignment to program as pretest scores move from the
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program group to the comparison group ranges. For instance,
three intervals could be incorporated into the compensatory case
with those in the lowest interval having a probability of .75 of
assignment to program, those in the middle interval having a
probability of .5, and those in the highest interval having a
probability of .25. Such a strategy would probably be perceived as
“fairer” within many institutional settings than either reliance on
a single strict cutoff or a single cutoff interval. The analysis
would again follow that of the general model described above.

THE USE OF COVARIATES

In most settings other program measures will be available as
covariates in the regression-discontinuity analysis. In educational
contexts one might use grade point average, socioeconomic
status, attendance records, and so on. The general model can
easily be extended to include covariates, as discussed in Judd and
Kenny (1981). Essentially, this involves simply adding relevant
covariate terms to the model described above. As with any
covariance analysis it is important to select the covariates
judiciously because inclusion of terms that are highly correlated
will act to reduce the efficiency of program effect estimates. This

is especially important in regression-discontinuity analysis as
outlined above because it is already possible that there may be

some loss of efficiency due to overspecification.

COMPOSITE PRETEST MEASURES

The preprogram measure in regression-discontinuity need not
be a single test value—assignment to group can be made on the
basis of joint consideration of a number of measures. For
example, both clinician ratings and psychological test scores
could be combined into a single index and persons could be
assigned to condition on the basis of a cutoff on the total score.
The total score could be obtained in a number of ways—for
example, through simple additive or weighted indexes or through
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factor analysis. The general model would be appropriate for
an:' ¢ nbstituting the total score where the pretest, x;, occurs.
Judd and Kenny (1981) recommend that all of the individual
measures that make up the composite except one be included in
the analysis.

PRETEST HOMOGENEITY IN THE PROGHA'M GROUP

If the program can only be administered to a small percentage
of the total sample there may not be sufficient pretest variance in
the program group to warrant the estimation of regression lines
for the group. This was probably the case in the Seaver and
Quarton (1976) study of the effects of being selected for the
Dean's list on subsequent grade point averages. The analytic
approach for such a case follows from the general model with
two major modifications. First, since it is not reasonable to
estimate regression functions for the program group, investiga-
tions of interaction effects (i.e., changes in slope or regression
function between groups) are ruled out. Thus all interaction
terms in the general model (e.g., Bixz, Bsxi’z) should be
excluded. Second, because it no longer makes sense to speak of
the difference between the within-group regression lines at the
cutoff, the program effect can more logically be estimated at a
central pretest value for the program group (e.g., the pretest
mean or median for that group) by subtracting that value from
pretest scores.

SEPARATE WITHIN-GROUP DISTRIBUTIONS

Boruch (1974) distinguishes between cases where the entire
sample comes from a single pretest distribution and where the
groups come from separate and distinct pretest distributions. The
general model assumes the former—an original single distribu-
tion is dichotomized by the cutoff point. There are two major
settings in which separate distributions might arise. First, if the
assignment variable is a composite that is constructed using
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discriminant function analysis, the resulting measure will be
bimodal. Second, if two intact groups are selected for study
because they are naturally distinct populations, the pretest
distribution will also be bimodal. This might occur if one
discovers two extreme groups that have a “natural” cutoff as
might be the case when selecting for study two intact classrooms,
one of which consists of slow learners and the other of which is
composed of high achievers.

The key difference between the single and multiple distribution
cases stems from the implications of random measurement error
and within-group regression to the mean. When groups come
from a single pretest distribution, the general model encompasses
the entire pretest range. Attenuation of slope due to measurement
error will occur across the entire range and will not bias estimates
of effect. Similarly, regression will be toward the overall pretest
mean and will be offsetting across groups. When groups repre-
sent distinct populations, measurement error and regression to
the mean can operate separately within the groups. Thus, even in
the absence of the program, within-group attenuation of slope
will lead to pseudo-effects.

The statistical analysis for the separate pretest distribution
case must therefore incorporate a correction for measurement
error. Traditionally, corrections of this sort involve adjusting
pretest scores in each group using a measure of within-group
reliability. The adjusted pretest scores could then be incorporated
into the general model in place of the original pretest scores. The
reader is referred to Campbell and Boruch (1975) and Cook and
Campbell (1979) for more detailed discussion of the issues
involved in pretest score adjustment.

ILLUSTRATIVE ANALYSES

The data that is used to illustrate the analytic - approaches
outlined above is from the Title I compensatory education
programs of the Providence, Rhode Island School District. The
Comprehensive Test of Basic Skills (CTBS) was administered in
March, 1978 (pretest) and March, 1979 (posttest). Analyses are
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presented for the second grade reading program and the fourth
grade mathematics program, both of which began in September
of 1978 and continued until the posttest.

t

SECOND GRADE READING PROGRAM

The bivariate distribution for the second grade program is
shown in Figure 5.2. Program participants are those scoring
below the cutoff score. Visual inspection of the graph indicates
that a discontinuity at the cutoff is plausible. It appears that, on
average, program group posttest scores are elevated above a
visually extrapolated comparison group regression line. The pre-
post relationship in the comparison group appears reasonably
linear. The program group is considerably limited in pretest
variance, but there is some indication of a possible first-order
interaction— low-scoring program students seem to have gained
slightly more than high-scoring ones. The pattern in the data is
clearer in the plot of posttest means versus pretest scores shown
in Figure 5.3. To obtain this plot, all posttest scores for each
pretest value were averaged. It is important to recognize that
plotted values are based on different n’s with fewer cases at
pretest extremes. One might also try several plots of this type for
intervals on the pretest rather than for individual scores alone.
Nevertheless, the comparison group function clearly looks linear,
although evidence for an interaction effect remains marginal.

The correlations between predictor variables point to a major
difficulty in using polynomial functions—the high degree of
multicolinearity that results. For example, the correlation be-
tween x2 and x® is .96681 while the correlation between the
quadratic and cubic interaction terms is —.96987. As more terms
are added to the analysis, the covariance matrix approaches
singularity, making it difficult to estimate models in a strict
hierarchy of terms beyond third or fourth order.

The analysis that was conducted consisted of ten steps. Visual
inspection indicated that the likely pre-post function was linear,
with perhaps a linear interaction. In the first step the linear term
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Figure 5.2 Bivariate Distribution, Providence, RI, Second Grade Reading Program

and dichotomous assignment variable were used. In the second
step, the linear interaction was added. The third and fourth steps
added the quadratic and quadratic interaction terms while the
fifth and sixth added the cubic and its interaction. Because of
high multicolinearity, the seventh and eighth steps added the
fifth-order and its interaction term while the ninth and tenth
steps added the eighth-order terms. In the tenth step, the eighth-
order interaction term was significant, thus making it difficult to
use backward elimination on the basis of the significance of the g
as outlined in Judd and Kenny (1981).

R-squared values for all ten steps are shown in Figure 5.4.
Recall that r-sqixared values will never decline as more terms are
added to a model. There is a slight jump at step two (linear and
linear interaction) and a slightly larger one when eighth-order
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Figure 5.3 Posttest Means, Providence, R, Second Grade Reading Program

terms are added in steps nine and ten. We expect a “leveling-off”’
of the r-squared function when the model becomes overspecified
and there is some evidence that this occurs at step two but the
jump at step nine may indicate some higher-order component.
The values for the residual mean square at each step are shown in
Figure 5.5. We expect that this value will be at a minimum at the
step where the model is closest to exact specification. As with the
previous graph, the evidence favors the model at step two or the
higher-order model of step nine. Estimates of gain at each step
are shown in Figure 5.6. We expect estimates to stabilize when
the model becomes overspecified although the increase in stan-
dard errors for higher steps may make this function difficult to
interpret. There is some evidence for stabilization between steps
two and four but the function becomes erratic thereafter.

Statistical Analysis 143

58000 »_}_
57600 _}_
57200 - /r)
R
Square
56800 ==
56400 T
H 3 H i 3 H i H H i
56000 3 1 1 3 1 1 [ 1 1 1
Q 1 2 3 4 S [ 7 8 9 10
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It appears from these criteria that there are two major choices.
First, the reasonableness of a linear true function is supported to
some extent. Second, the possibility that the model may be far

' more complex is also suggested. To help decide between these we

can examine plots of the regression lines for each model. The
regression line for the model in step two (linear and interaction)
is shown in Figure 5.7. The evidence for an interaction is visually
slight and, in fact, the interaction term was not significantly
different from zero at this step. The regression line for the model
in step nine is shown in Figure 5.8. This function is clearly not
substantively plausible although it fits the data well. Probably it
is more reflective of idiosyncracies in the sample or of research
implementation difficulties than of any true pre-post function.
These graphs illustrate well the problems involved in using
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Figure 5.5 Residual Mean Square Values Across Regression Analysis Steps, Provi-
dence, R1, Second Grade Reading Program

polynomial regression and the importance of judgment of the
part of the analyst. Simple reliance on statistical criteria might
make plausible an eighth-order model, but inspection of the
function clearly reduces its sensibility.

The pattern that emerges from the analysis is clear. Either a
linear (step one) or linear plus interaction model (step two)
appears to be the best model for the data. The estimate of gain for
step one is 44.61 (s.e. = 7.50) while for step two it is 35.84 (s.e. =
10.07). Visual inspection confirms the presence of a discontinu-
ity. On this basis, it is reasonable to conclude that the program
group improved in reading ability relative to the comparison

group.
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FOURTH GRADE MATH PROGRAM

The bivariate distribution for the fourth grade math program
is shown in Figure 5.9 and the graph of posttest means in Figure
5.10. There appears to be some curvilinearity although this is
somewhat exaggerated by the presence of several apparent
“outliers” at either end of the pretest distribution. Except for
these cases, the comparison group distribution could be plausibly
linear. As with the second grade data, there is little pretest
variability in the program group and, therefore, it will be difficult
to detect interaction effects. There appears to be some slight
visual evidence for a discontinuity with a considerable number of
program cases near the cutoff who obtained a relatively low
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Figure 5.7 Step Two Model Regression Line, Providence, R1, Second Grade Reading
Program

posttest score. The distribution suggests that the “likely” func-
tion may be second or third order.

The analysis consisted of ten steps. Steps one through eight
involved adding in from first through fourth-order terms and
their interactions. Because of the high multicolinearity, steps nine
and ten added in the seventh-order term and its interaction. The
plot of r-square values across steps is shown in Figure 5.11. There
appears to be a clear jump at step two (linear interaction) and
step five (cubic) with a leveling-off at higher steps. Figure 5.12,
the plot of residual mean squares across steps, shows a similar
pattern reaching a minimum level at step five. Estimates of gain
are shown in Figure 5.13. Again, these appear to level off at step
five or six. '
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Figure 5.8 Step Nine Model Regression Line, Providence, R, Second Grade Reading
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The pattern that emerges suggests two possibilities—the
model at step two (linear plus interaction) or the model at step
five (cubic). Regression lines are shown for these two in Figures
5.14 and 5.15 respectively. The cubic model shown in Figure 5.15
fits the data well but appears to be strongly influenced at the
extremes by the presence of a few cases. The model makes little
substantive sense—it seems unlikely that multiple repetitions of
the study would yield similarly complex functions. It is worth
noting that the estimates for the step two model (3, =-19.04; s.e. -
= 5.31) and the step five one (8, =-21.82; s.e. = 7.65) do not
differ considerably. In both cases, the estimate is significantly
negative at a .05 level and one could reasonably conclude that
program students on average performed relatively worse than
comparison students on the posttest. One should be hesitant in
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Figure 5.9 Bivariate Distribution, Providence, RI, Fourth Grade Math Program

this case about selecting one of these models over the other and
probably reporting both estimates is the most sensible course.

SUMMARY OF ,REGRESSION-DISCONTINUITY ANALYSIS

The analyses above clearly show that the central problem in
regression-discontinuity analysis is model specification. There is
no simple or mechanical way to determine definitively the
appropriate model for the data. As a result, judgment and
discretion on the part of the analyst are warranted. In addition,
more experience in interpreting regression output across a series
of steps is needed. As a first step, this could be examined with
simulations to verify that reasonable models would be selected.

The model selection problem calls to mind the inherent
conflict in regression analysis between its uses for prediction and
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Figure 5.10 Posttest Means, Providence, RI, Fourth Grade Math Program

for model building. When one wishes to predict with accuracy
there is some advantage in using a large number of predictors and
accepting that there will be some amount of multicolinearity. In
general, more complex models are acceptable for predictive
purposes. When the goal of regression analysis is to build a
theory or model there is usually a desire for parsimony—a search
for the most generalizeable model given the given the smallest
reasonable subset of predictors. Regression-discontinuity analysis
falls somewhere between these two goals. Prediction of the jump
at the cutoff point is critical, but it is not desirable to accomplish
this by generating complex models that make no substantive
sense for the data. This chapter argues that the model selection
process should seek out a model that, if anything, slightly
overspecifies the likely true function (rather than underspecify-
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Figure 5.11 R-Squared Values, Providence, RI, Fourth Grade Math Program

ing), but not to the extent that the selected model is inappropriate
substantively. Statistical considerations alone are not sufficient—
analytic discretion is required.

Another way to view the differences between traditional
regression analysis and regression-discontinuity analysis centers
on the role of the predictor variables included in the model. In
typical regresion analyses, we need to be concerned about which
specific variables should be included, as well as about the nature
of the functional form. In regression-discontinuity analysis, the
central emphasis is almost exclusively on the functional form
-specification because the measures that are included are deter-
mined by the design (i.e., the dummy-coded program indicator,
the preprogram assignment measure, polynomials of the assign-
ment measure and interaction terms).
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Methodological approaches to reducing the model specifica-
tion problem seem especially promising and deserve further
attention. One po§sibility is to couple randomized strategies with
regression-discontinuity as discussed earlier. Boruch (1978) has
also suggested that double pretests might be useful for determin-
ing what the pre-post function is. If double pretesting is done, the
model that best fits the pretest 1 — pretest 2 distribution could be
directly applied to the pretest 2 — posttest analysis. Of course,
one still faces the problem of specifying the model for the double
pretests, but such an analysis would be valuable, especially for
distinguishing between real interaction effects and pseudo-effects
that result from test floors, ceilings, and chance levels.
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Figure 5.13 Estimate of Gain Across Regression Analysis Steps, Providence, RI,
Fourth Grade Math Program

Another problem has to do with implementation of the design.
Although poor research implementation is a threat to any
research effort, regression-discontinuity may be particularly
sensitive to it because of the need to determine the functional
form rather than the mean level of the data. Chapter 6 argues
that the most common implementation errors that occur when
using regression-discontinuity in compensatory education evalua-
tion tend to lead to consistent underestimates of program effect.

Finally, the analytic approach offered here will often lead to
choices between several reasonable models, and, therefore, pro-
gram effect estimates. While this is reasonable given statistical
and methodological limitations, it may be unpalatable politically
when single estimates are desired for program decision making. It

‘Figure 5.14 Step Two Model Regression Line, Providence, RI, Fourth Grade Math

Program

is certainly possible that different analysts could reach different
conclusions given the same data. This state of affairs points to the
importance of secondary analysis of data from multiple perspec-
tives (Boruch et al.,1981) and to the need for better strategies for
resolving conflicting results.

THE ANALYSIS OF THE
""FUZZY" REGRESSION-DISCONTINUITY DESIGN

A great deal of work has been devoted to analytic possibilities
for the case where there is misassignment in terms of the cutoff
criterion because adherence to this standard appears to be a
major implementation problem for the design (Trochim, 1980,
1982).2 Goldberger (1972) showed that under typical assump-

T
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Figure 5.15 Step Five Model Regression Line, Providence, RI1, Fourth Grade Math
Program

tions misassignment will result in artificially induced within-
group curvilinearity that can lead to biased estimates of effect.
Campbell, Reichart, and Trochim (1979) showed through simu-
lations that none of the traditional regression analysis approaches
(analysis by actual assignment; analysis by original cutoff
assignment; exclusion of misassigned cases; exclusion of all cases
in the interval of misassignment) eliminated the pseudo-effect.

The central problem in such fuzzy regression-discontinuity
designs can be restated in terms of selection bias threats to
internal validity (Cook & Campbell, 1979). In the sharp assign-
ment case, the groups are deliberately nonequivalent, but the
source of this nonequivalence is perfectly known because it is
generated by the cutoff on the preprogram measure. When
misassignment occurs (except in the unusual cases of random
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misassignment or misassignment whose source is perfectly
known), inclusion of the pretest in the analytic model no longer
accounts for group nonequivalence. Some methodologists argue
that if the degree of misassignment is not great (i.e., if fewer than
5% of the cases are misassigned) the sharp regression-discontinu-
ity analysis will not be seriously biased (Judd & Kenny, 1981).

The problem of selection bias has been viewed as specification
error or omitted-variable bias by Barnow, Cain, and Goldberger
(1978) who state:

Selectivity bias addresses the question of whether there is some
characteristic of the treatment (or control) group that is both
associated with receipt of the treatment and associated with the
outcome so as to lead to a false attribution of causality regarding
treatment and outcome. So stated, selectivity bias is a version of
omitted-variable bias, which is commonly analyzed under the rubric
of specification error in econometric models. (p. 4)

Selection bias may affect program estimates when a variable
related to z; and y; is not included in the analytic model.
In Chapter 1, three pretest-posttest group designs were
presented as varying along a continuum based on their assign-
ment functions. Randomized experiments have perfectly known
assignment (probabilistically) with a probability of assignment to
program of .5 for any given pretest value. Regression-discontinu-
ity designs also have perfectly known assignment functions where
the probability of assignment is 0 on one side of the cutoff
(comparison cases) and 1.0 on the other side (program cases).
Because the assignment functions are known, neither of these
cases is susceptible to selection bias. All nonequivalent designs
fall between these two extremes in terms of their assignment
function and, because the assignment rule is unlikely to be
known, these designs are susceptible to selection bias. The fuzzy
regression-discontinuity design represents a degradation of the
true regression-discontinuity design where the assignment func-
tion is no longer clear because misassignment was allowed. Thus,
it also falls somewhere between true experiments and true
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regression-discontinuity designs and is susceptible to selection
bias.

The potential for selection bias is a major factor preventing the
development of a general analytic scheme that would be appro-
priate for all four of these conceptually similar pretest-posttest
group designs. The need for an analytic solution to the selection
bias problem in the fuzzy regression-discontinuity and nonequi-
valent group designs is especially apparent when one considers
the frequency with which these two designs occur in practice.
While both can occur in their own right, they also represent the
degraded versions of the true regression-discontinuity and ran-
domized experiment (i.e., versions where the assignment strate-
gies for either are incorrectly implemented). Conner (1977) for
example, points out the difficulties of adhering to random
assignment in practice, while Chapter 7 describes the almost
universal occurrence of misassignment relative to the cutoff value
in implementations of the regression-discontinuity design within
the context of compensatory education evaluation.

To summarize, in the true experiment and regression-disconti-
nuity designs, the assignment procedure is known and is perfectly
accounted for by the inclusion of the prestest, X; and the
assignment variable, z;, in the analytic model. With the fuzzy
regression-discontinuity and nonequivalent group designs, assign-
ment is not perfectly accounted for by regressing y; on x; and z;
and an analytic model based on these is likely to exhibit selection
bias. The development of an analytic solution to the selection bias
problem is seen here as a step toward unifying analytically this
set of conceptually similar designs.

THE RELATIVE ASSIGNMENT APPROACH

Suppose as in Spiegelman (1976, 1977, 1979) that x;, v;, and g;
are unobserved variables where x; denotes true ability, v; denotes
pretest random measurement error, and q; denotes posttest
random measurement error. The data analyst and program
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evaluator observe x, y, and z; that are related to the unobserva-
bles (for simplicity of exposition) by the equations

and
vi = B + Bixi + Bzi + q;

where z; = 1 if the research participant has received the program
and 0 otherwise. In general terms, the approach to selection bias
recommended here relies on an estimate of E(z;|x;), which is
termed the relative assignment variable, z;, in place of z; in the
analytic model. Spiegelman (1976, 1977, 1979) has shown that an
appropriate estimate of b, based on the estimate of E(z;|x) is
asymptotically unbiased under rather general conditions. Specifi-
cally, it is argued here that the regression of y; on x; and zZ
(instead of z;) will yield unbiased estimates for common selection
bias situations. The estimate, z; is not assumed to be related in
any way to x; or x| except that it may not be perfectly colinear
with x; (i.e, z; ¥ a; + ax).

It is useful to picture what z; is estimating. First, consider
assignment in the true experiment. Here, E(z;|x;) = .5 for any
given x;, which is to say that for any given pretest value, one
expects on average about half the cases will be assigned to the
program and half to the comparison group. In this case, the
relative assignment variable can be described in relation to x; by a
horizontal straight line at z; = .5 as shown in Figure 5.16. In
these graphs, z; is on the vertical axis and can take values from O
to 1 (i.e., none or all in the program group). The pretest values,
x;, are shown on the horizontal axis. Second, consider the
regression-discontinuity design when assignment is “sharp”
relative to a pretest cutoff value. Here, it might be that E(z;|x;) =
1 if x; is less than or equal to the selected cutoff and 0 if it is
greater. This step-function is shown in Figure 5.17. Finally, for
fuzzy regression-discontinuity or the nonequivalent group design,
the relative assignment can be described by a function that ranges
between the horizontal line of the true experiment and the step-
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function of the sharp regression-discontinuity design. Several
functions of this type are sketched in Figure 5.18. It is clear that
z; can be viewed as the estimated probability of assignment or as
an estimate of the proportion of cases assigned to the program for
any given pretest value.

Two methods for estimating relative assignment are offered
here. The simplest and most straightforward can be termed the
assignment percentage method and is presented primarily for
heuristic reasons. It can be calculated in two ways. With the first
procedure, cases are ordered by their pretest values and divided
into equal size pretest intervals. In the second procedure, cases
are similarly ordered by the pretest but are divided into intervals
having an equal number of cases. For both procedures, the
percentage of cases assigned to the program is calculated within
each defined interval and then divided by 100 to yield values that
range from O to 1. These values are then assigned to each
individual case within the intervals. Spiegelman (1976) has
shown that for extremely large n, estimates from both procedures
will on average be equivalent.

10+

Relative
Assignment

Pretest (x;)

Figure 5.16 Relative Assignment Variable Function for the True Experiment
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The second method for estimating the relative assignment
variable comes from the work of Spiegelman (1976, 1977, 1979)
and can be termed the nearest neighbor moving average method.
Three steps are involved:

(1) The set of observations (x;, y;, and z;) are put in ascendmg order
according to the pretest, x;

(2) Values of A and B are computed as the greatest integer part of
A =1n""2

B = n*?/2
where n is the number of cases.

(3) The relative assignment variable, z; (i.e.,, E(z|x)), and y; (ie.,
E(y;|x)) and y; (ie.,
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Essentially, the procedure involves computing the moving aver-
age of the z;’s for cases ordered by x;. The window for the moving
average is of width 2A. Conditions are specified such that the A-
1 values of z; at either end of the series are assigned the values of
the first and last estimates having 2A observations. The estimate
s in the procedure is a weighting factor for the regressions. In
thls chapter, the assignment percentage and moving average
procedures will be shown with and without this weighting.
Related procedures that might be useful for estimating relative
assignment are suggested in the work of Maddala and Lee (1976),
Barnow, Cain, and Goldberger (1978), and Berk and Rauma
(1983). Essentially they use the maximum likelihood probit
analysis of z; on x; to estimate relative assignment. There are two
major reasons for not including the probit analysis approach
here. First, it is based on the assumption that the procedure on
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Essentially, the procedure involves computing the moving aver-
age of the z;'s for cases ordered by x;. The window for the moving
average is of width 2A. Conditions are specified such that the A-
1 values of z; at either end of the series are assigned the values of
the first and last estimates having 2A observations. The estimate
s in the procedure is a weighting factor for the regressions. In
thls chapter, the assignment percentage and moving average
procedures will be shown with and without this weighting.
Related procedures that might be useful for estimating relative
assignment are suggested in the work of Maddala and Lee (1976),
Barnow, Cain, and Goldberger (1978), and Berk and Rauma
(1983). Essentially they use the maximum likelihood probit
analysis of z; on x; to estimate relative assignment. There are two
major reasons for not including the probit analysis approach
here. First, it is based on the assumption that the procedure on
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which assignment was based is known. This will often not be the
case. Second, probit analysis is only appropriate here if the
relative assignment variable follows a cumulative normal distri-
bution. The relative assignment approach outlined here does not
assume a specific functional form for probability of assignment.

To summarize, the relative assignment variable, z;, is an
estimate of E(z;]x;), that is, an estimate oft the probability of
assignment to the program for any given x; value. Two methods
are suggested for estimating z;: the assignment percentage and
moving average approaches.

ILLUSTRATIVE SIMULATIONS

The relative assignment variable approach is illustrated here
on simulated data. This requires constructing a pretest, x;, a
posttest, y; and an assignment variable, z, For the true or
“sharp” regression-discontinuity design in the case of compensa-
tory education (where the most “needy” student receives the
program) the assignment might be represented as

z, = 1iff x; < %o
= 0 otherwise

where x; is the pretest value for a given student and x, is the
pretest cutoff value for assignment to the program. To generate
data for the fuzzy regression-discontinuity or nonequivalent
group designs one must assign using a variable that is not
perfectly related to the pretest. The differences between these two
designs can be viewed as one of degree not of kind. To generate
fuzzy regression-discontinuity data one can begin with true
regression-discontinuity data and introduce slight misassignment
in terms of the cutoff value, x,. To generate nonequivalent group
design data one can allow greater amounts of misassignment,
thus leading to groups that are more nearly equivalent on the
pretest. For convenience, the discussion presented here is phrased
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in terms of fuzzy regression-discontinuity rather than the none-
quivalent group design.

Five models of misassignment are used to generate data for the
simulations and are indicated by the symbols z1; to z5,. To begin
with, we generate a true score, x; normally distributed with a
mean of zero and variance of nine units. In addition, we generate
three error terms, v;, q;, and w;, such that each is normally
distributed with zero mean and variances of one or four units
depending on the simulation. Here, w; can be considered
assignment error and v; and q; are pretest and posttest error
respectively. We can now construct a pretest, x;, such that:

X = X+ v
Once we generate z; using one of the five models described below,
we can construct a posttest, y;, such that:

Yi = 8z + X + @

where “g,” the program effect, is either zero or three (i.e., the
null case or a gain of three units). The five models used to
generate z; are

(1) Assignment by pretest plus independent assignment error:
zIb= 1 iff (x} + v + w) £ 0
= 0 otherwise
(2) Assignment by true score:
22,= 1 iff (x}) € 0
= 0 otherwise
(3) Assignment by true score plus independent assignment error:
23;= 1 iff (x + w) £ 0
= 0 otherwise
(4) Assignment by true score and pretest
24,= i iff x; £ 0 and x, £ 0
= 0 otherwise
(5) Assignment by true score intervals:
25= 1 iff xt £ -1.0 or ( .5 < x £ 0)
= 0 otherwise
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For each of the five models of misassignment, we use relatively
low or high error variances (i.e., equal to 1 or 4) and a gain, g, of
" either O or 3 units. Thus, we have 5 (assignment models) X 2
(gain) X 2 (error variance) = 20 separate conditions. For each
condition twenty independent simulations ,were carried out
yielding a total of 20 X 20 = 400 runs, each based on 1000
individual cases (i.e., n = 1000).

For each run the following general linear regression model was
used to estimate the effect:

vi = Bozi + B + Boxi + &

Where

y = posttest for individual i

x, = pretest for individual i

B, = parameter for program effect estimate
B, = parameter for intercept
B, = parameter for linear slope

¢; = random error

z = assignment (i.e., zl;...25) or estimate of z; as described below

For each run, five analyses were conducted:

(1)  Analysis using real assignment (ie.zl, .. 25, depending on the
simulation) in place of z;

(2) Analysis using moving average estimate of z,.

(3) Analysis using assignment percentage estimate of z;.

(4) Weighted analysis using moving average estimate.

(5) Weighted analysis using assignment percentage estimate.

With the analysis based on real assignment, we expect treatment
estimates to be biased for all assignment models except for z1;,
assignment by pretest plus independent assignment error. In this
case, misassignment occurs randomly with respect to the pretest
and will be reflected equally on the average in both groups. If the
relative assignment variable approach successfully removes selec-
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tion bias, the four analyses based on z; should yield unbiased
estimates for all five assignment models.

The results are presented in Table 5.1 (g = 0; low error
variances) Table 5.2 (g = 0; high error variances), Table 5.3 g=
3. low error variances), and Table 5.4 (g = 3; high error
variances). Each table presents, for all five assignment models
and all five analyses, the average gain, the standard error of the
average gain and the minimum and maximum obtained gain for
twenty runs. Results will be considered biased if the true gain, f;,
lies outside the interval o * 3SE(By).

Several conclusions can be drawn from the tables. First, as
expected, estimates from the analyses based on real assignment
are biased except when misassignment is random. Second, the
moving average estimates of relative assignment appear to yield
unbiased estimates of gain for most of the models and conditions
that were studied. Even for the three (out of twenty) sets of
conditions where bias is detected, two of these had average
estimates that were not greatly biased, especially when consid-
ered relative to estimates from the analyses by real assignment.
Third, it appears that estimates from the moving average
analyses are in general less biased than the ones from the
assignment percentage ones. This may be in part because the
assignment percentage functions in these simulations are based
on only 50 intervals of only 20 z; values each. Thus, the estimate
of z; can only take on twenty values between O and 1 (i.e,, 0, .05,
.10... .95, 1.0), whereas the moving average estimate is more
finely differentiated. Finally, the estimates yielded by relative
assignment variable analyses appear to be less biased when error
variances are low. It may be that with large sample sizes (i.e.,
larger than n = 1000) and correspondingly greater statistical
power, estimates would in general be unbiased. In fact, Spiegel-
man (1976, 1977, 1979) has been careful to point out that the
method is efficient only for large sample sizes.
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TABLE 5.1
Fuzzy Regressiou-Discontinuity Simulation Results
(b, = 0, error variances = 1)

Model Analysis’ bo SE(b,) min(by) max(by)
2l Real 007 027 -.293 210
MA k023 050 -.375 545
AP 037 043 \ ~.306 482
"MA(w) .040 055 -394 .553
AP(w) 050 051 -342 514
22, Real -1 026 -1.356 -918
MA -051 056 -.540 283
AP -.185 058 ~.745 251
MA(w) -.086 058 -.552 290
AP(w) -.167 057 -613 288
23, Real -922 022 -1.105 ~728
MA -178 054 -.701 316
AP -.350 047 -.686 067
MA(w) -.143 058 -.685 328
AP(W) -.265 049 ~.744 129
24, Real -.623 033 -.843 -.361
MA ~.003 033 -.248 423
AP -.054 032 -.283 341
MA(w) .009 038 -.239 491
AP(w) -032 036 -2m 431
25, Real -.979 024 -1177 -7
MA 040 059 -316 641
AP -129 055 -437 385
MA(w) 078 065 -.405 648
AP(w) ~.054 057 -.409 429

*Real = real assignment; MA = moving average; AP = assignment percentage;
MA(w) = weighted moving average; AP(w) = weighted assignment percentage

ILLUSTRATIVE REAL DATA ANALYSIS

Two sets of fuzzy regression-discontinuity data were con-
structed from the third grade reading scores for a Title I
compensatory education reading program in Providence, Rhode
Island (Trochim, 1980). It is useful to apply the relative
assignment variable approach to such data to see how the
assignment functions differ from the simulations and to detect
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TABLE 5.2
Fuzzy Regression-Discontinuity Simulation Results
(b, = 0, error variances = 4)

Model Analysis* by SE(EO ) min(b,) max(b,)
zl; Real .001 .054 -422 .606
MA -019 187 -1.253 1.794
AP -.060 148 -.969 1.664
MA(w) -.049 184 -1.246 1.931
AP(w) -.074 150 -914 1.695
72, ~ Real -2.715 034 -2.979 -2.418
MA -.398 .183 -1.518 946
AP ~-1.113 142 -2.154 131
MA(w) -371 183 ~-1.586 .866
AP(w) -1.031 148 -2.143 191
23 Real -1.685 038 -1.985 -1.350
MA -231 .266 -2.486 1.823
AP -1.020 .207 -2.654 .685
MA(w) -.163 .246 -2.563 1.751
AP(w) -.922 .207 -2.703 .620
24, Real -1.706 .045 -2.268 -1.423
MA : .039 .080 -722 791
AP -.141 .081 -.954 .530
MA(w) 45 .083 -.631 .935
AP(w) -137 .083 -.864 677
z5; Real -2.490 .054 -2.939 -2.157
MA -.143 173 -1.335 929
AP -1.020 153 -2.331 321
MA(w) -110 167 -1.356 .892
AP(w) -.945 .148 -2.220 .163

* Real = real assignment; MA = moving average; AP = assignment percentage;
MA(w) = weighted moving average; AP(w) = weighted assignment percentage

any unforeseen difficulties in application. The linear model used
in the simulations is applied here because visual inspection of the
data indicates that a linear model may be appropriate and
because there are relatively few program participant cases
available for estimating changes in slope or function. Only the
weighted and unweighted moving average analyses were carried
out (in addition to analysis by real assignment) because the
illustrative simulations indicate that they were less likely to
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TABLE 5.3
Fuzzy Regression-Discontinuity Simulation Results
(b, = 3, error variances = 1)

Model Analysis* by SE(b,) min(b,) max(by)
L]
zl; Real 2.992 ..025 2.808 3.135
MA 3.141 .048 2.747 3.535
AP 3.025 .043 2.679 3.442
MA(w) 3.126 .053 2.646 3.510
AP(w) 3017 .048 2.593 3.425
22 Real 1.860 .021 1.686 2.079
MA 2.995 .047 2.659 3.380
AP 2.804 .049 2.393 3.209
MA(w) 2.830 048 2435 3.199
23, Real 2.086 .027 1.785 2.225
MA 2.976 .066 2.316 3.485
AP 2.785 .053 2.257 3.160
MA(w) . 2976 .062 2.365 3.532
Ap(w) 2.783 .048 2,277 3.055
24, Real 2.425 034 2.012 2.705
MA 3.184 .041 2.812 1.564
AP 2.969 .039 2.616 3.278
MA(wW) 3.158 .040 2.790 3.572
AP(w) 2.975 .038 2.626 3.323
z5; Real 1.992 .023 1.862 2.231
MA 3.098 .058 2.599 3.431
AP 2.908 .049 2.479 3.199
MA(w) kR .063 2.588 3.648
AP(w) 2.960 .056 2,553 3.431

* Real = rca! assignment; MA = moving average; AP = assignment percentage;
MA(w) = weighted moving average; AP(w) = weighted assignment percentage

exhibit bias than the assignment percentage estimates. In a
previous analysis of data from this program where sharp
regression-discontinuity data were used, the estimate of gain for
the same linear model was f; = 29.73 with a standard error of
6.12 (Trochim, 1980). : ’

The first set of fuzzy data results from the use of the
vocabulary subscale of the reading pretest rather than the total
score. Assignment is sharp relative to the total score, but is fuzzy
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TABLE 5.4
Fuzzy Regression-Discontinuity Simulation Results
(b, = 3, error variances = 4)

Model Analysis® b, SE(by) min(by) max(b,)
zl;, - Real 2.908 056 2.203 3.356
MA 2.944 148 - 1.844 4.146
AP 2.874 122 1.867 3.855
MA(W) 2.951 157 1.851 4.273
AP(w) 2.876 127 1.889 3.936
22, Real 401 047 -.134 785
MA : 2.969 130 1.930 4.131
AP 2.007 .102 1.304 2.956
MA(w) 3.017 125 2.047 4.261
MA(W) 2.134 098 1.437 3.047
z3; Real 1277 043 894 1.508
MA 2.001 21 039 4.764
AP 1.553 .168 .363 3.016
MA(w) 2.038 266 047 4.697
AP(w) 1.596 176 351 3.335
24; Real 1.343 051 .869 1.821
MA 3.139 .081 2.248 3.869
AP 2.841 081 1.814 3.627
MA(w) 3.164 084 2.242 3.936
AP(w) 2.892 083 1.847 3.713
z5; Real .524 038 235 .900
MA 2.568 .165 1.001 3.895
AP 1.901 126 908 2.806
MA(w) 2.650 183 1.094 4229
AP(w) 2.019 141 1.032 3.161

* Real = real assignment; MA = moving average; AP = assignment percentage;
MA(w) = weighted moving average; AP = weighted assignment percentage

relative to the subscale. The bivariate plot of the data is shown in
Figure 5.19. Here, the analysis by real assignment, z;, showed no
significant gain (3, = 11.13, SE(B,) = 6.22), whereas the relative
assignment variable analyses showed gains similar to the one
found in the sharp regression-discontinuity case (B, = 30.05,
SE(f,) = 10.13 for the unweighted moving average analysis and
B, = 29.43, SE(B) = .56 for the weighted moving average
analysis).
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Figure 5.19 Fuzzy Regression-Discontinuity with a Vocabulary Pretest and Reading
Posttest

The second set of fuzzy data is from the same program and
results from the inclusion of the scores of children who come
from schools in the district that were ineligible for service. Some
of these students qualify for the program on the basis of their
pretest score. The total reading score is used for the pretest and
posttest and the bivariate distribution is shown in Figure 5.20
Here, all estimates of program effect are significant at the .05
level, although the estimate from the analysis by real assignment
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appears smaller than the relative assignment estimates (B, =
23.32, SE(B,) = 5.60 for real assignment analysis, B, = 47.82,
SE(f,) = 7.37 for unweighted moving average analysis and (, =
48.77, SE(B,) = .41 for the weighted moving average analysis).

Clearly, the results of analyses based on real assignment tend
to differ from those based on relative assignment. Given that the
former are likely to be biased and the latter are not (at least under
the conditions specified here), one might place greater faith in the
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relative assignment analyses and conclude that this reading
program had a positive effect.

CONCLUSIONS

While the relative assignment variable approach, especially
using a weighted moving average analysis, appears in general to
yield unbiased estimates in several models where selection bias is
expected, there are still important unanswered questions. For
example, it is not clear whether unbiased estimates will be
obtained under more realistic or complex assignment models.
Specifically, it is important to determine by simulatons whether
estimates are biased when the pretest-posttest relationship is
nonlinear, when a wider variety of sample sizes are tested, and
when misassignment occurs nearer the extremes of the pretest
distribution. In addition, it is not yet clear whether the analysis
yields biased results in general or whether the biases obtained
here are related to sample size, interval size or other conditions
chosen for these simulations. More definitive simulations than
these illustrative ones require a greater number of runs for a
wider variety of conditions. ’

It is reasonable to conclude that appropriate estimates of the
relative assignment variable can be used to produce realistic
estimates of program effect under many conditions where
selection bias is expected. On this basis we might tentatively
advance the outline of a more general analytic approach for
pretest-postest group designs. First, if the true randomized
experiment or regression-discontinuity design are used and
assignment has been implemented correctly the analysis may be
based on the regression of y, on Xy Z; polynomials in x,
interactions of x, and z, and other appropriate covariates.
Second, if the fuzzy regression-discontinuity Or nonequivalent
group designs are used or if the assignment procedures of a true
regression-discontinuity or randomized design are not correctly
implemented, an estimate of z;, the relative assignment variable,
can be used in place of z; in the analytic model, at least as one
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part of a multiple analysis scheme (as described in Trochim,
1980) for estimating program effect.

NOTES

PRI . ot

. ified” and ‘“underspecified” in this text are n
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ificati rs. ’ _ '
speczm?l:leogisecrl:‘s)sion in this section is adaptcd_from Trochim and Szletgtz;n;:: r(elrgfcz’

3' Note that these figures are the same as in Chapter. l excfept tha these refer to
cmpi.rical estimates (relative assignment) of the probability of assign

discussed there.
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The ''Negative Gain"
Controversy

This chapter describes a controversy that directly involves the
regression-discontinuity design and it's potential applicability.'
While the debate is set in the context of compensatory education,
the reader should not assume that the issues involved are peculiar
to that arena. A firm understanding of the regression-discontinu-
ity design requires more than just knowledge of how the design
works in principle. The controversy that is discussed in some
detail here illuminates some of the more subtle issues that arise
when one attempts to implement the design in some real context.

BACKGROUND

Chapter 2 described the Title I evaluation system and the three
research models that are used in it. These models represent three
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major traditions in social science research methodology. Model
A, the Norm Referenced Design, and similar strategies represent
a tradition in educational research that relies on normative
information from standardized tests for an estimate of the growth
that would be expected in the absence of special training
(Tallmadge, 1980). Model B, the Comparison Group Model, is
cither a randomized or “true’” experiment in the Fisherian
tradition or, if random assignment is not used, is a pretest-
posttest nonequivalent group design in the tradition of quasi-
experimental designs outlined by Campbell and Stanley (1963)
and Cook and Campbell (1979). Model C, the Special Regression
Model, described here as the regression-discontinuity design, is
also in this quasi-experimental tradition.? The Title I evaluation
system makes it possible to compare these traditions directly
because the designs are used in multiple evaluations of similar
types of programs.

When the three Title I models were first presented, it was
assumed that they were in some way equivalent—evaluations of
the same programs by different models were expected to yield
similar results. However, the initial pattern of results does not
support this notion of model equivalence. Instead, the pattern
that emerges suggests that Model A tends to yield positive
estimates of the program effect while Model C estimates are near
zero or even slightly negative on average.” Because of these
results, the possibility of inherent bias in the estimates of one or
both of the models has become an important issue. One
implication of this controversy is that, regardless of the truth of
the matter, the discussion itself has affected the perception of the
models, especially regression-discontinuity, and consequently
affected the-degree to which it has been used.

Aside from the technical issues involved, the controversy is an
intriguing and well-documented example of the interplay be-
tween technical methodological matters and the social-political
context that encompasses them. The following discussion pre-
sents the issue in some detail primarily to document a conflict
between two important research traditions, but also to illustrate
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the. importance of considering contextual factors and relative
design features when examining the history and implementation
of a design.

THE PATTERN OF RESULTS

'Three major sources of information provide evidence for a
discrepancy in the average gains obtained when using Models A
and C: interviews of Title I evaluators at the local and regional
levels; review of relevant Title I literature; and the distributions
of gain estimates obtained from Title I programs.

Trochim (1980) reports the results of interviews conducted

with at least one representative of each of the ten Title I regional
Technical Assistance Centers (TACs) and many local Title I
evaluators. Interviewees who were aware of instances of both
designs indicated virtually unanimously that the designs ap-
peared to yield different results on the average. It was also
generally agreed that the average results from Model A tended to
be higher than those from Model C. Furthermore, persons who
were most familiar with the results from many evaluations
corroborated the notion that, in general, Model A yielded
positive gains while Model C yielded gains that were near zero or
even negative.
. This discrepancy has been acknowledged in the Title I
literature. Hardy (1978) and Echternacht (1978, 1980) cite
results obtained in Florida where sufficient instances of both
designs permitted the determination of a pattern of results.
Others who have attempted to compare the two designs directly
on the same program (Murray, 1978; House 1979; Long et al.,
1979) obtained results that are not inconsistent with the general
pattern cited here, although these studies are based on too few
instances to permit confident generalizations.

The most convincing evidence for the pattern of gains for the
two designs initially came from the State of Florida, largely
because there were sufficient instances of the application of both
designs to permit meaningful comparisons. All estimates of
program effect in Florida for Model A for the 1978-1979 school
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Figure 8.1 Distribution of Gains by Model for Title | Compensatory Education Pro-
grams in Florida, 1980

year (n = 614) and all estimates for Model C for the 1977-1978
and 1978-1979 school years (n = 273) were obtained. The average
gains were 6.595 NCE units (SE = .302) for Model A, -.799
NCE units (SE = .398) for the Model C estimate at the program
group pretest mean, and -2.371 NCE units (SE = .377) for the
Model C estimate at the cutoff. The distributions of gains for
these three estimates are depicted in Figure 6.1. Clearly, the
evidence indicates that, on the average, Model A yields signifi-
cantly positive estimates, while Model C appears to yield a zero
or perhaps slightly negative gain.
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Other studies of compensatory education provide little guid-
ance concerning which of these two designs yields estimates that
are closer to the truth. On the basis of what is known about the
effects of compensatory education in general, it is difficult to say
what the ‘expected* gain might be. Many previous studies have
been criticized on methodological, measurement, or ‘analyticz
grounds (Wick, 1978; Campbell & Erlebacher, 1970; Campbell &
Boruch, 1975). Even granting that biases in analysis have been
against finding effects, programs of this nature have noi been
found to be conspicuously effective when more appropriate
modes of analysis have been used (Magidson, 1977; Bentler &
Woodward, 1978). In spite of this, significantly harmful effects
have so far primarily been explainable as mistaken methodology.
Thus, in order to determine the likely source of the discrepancy
in results reported here, it is necessary to examine the designs in
question within the context of Title I evaluation.

SOME LIKELY SOURCES OF
THE DISCREPANCY IN RESULTS

It is possible, although hardly plausible, that both designs
could be yielding accurate estimates of effect cven though they
disagree. For example, it may be that since Model A tends to
require less cost and effort than Model C, districts that use it
have more time, money, or energy to devote to programmatic
efforts. The discrepancy in gains might then be attributable to
differential implementation of the programs rather than to the
designs themselves. However, explanations of this type are not
likely and it is reasonable to hypothesize that one or both of the
designs yields biased estimates of effect.

It is useful to begin an investigation of bias by considering how
the methodological community views the strengths and weak-
nesses of each of the designs. Judgments about the relative
strengths of research designs are often made in the methodologi-
cal literature and, in general, Model C is usually depicted as
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“theoretically™ stronger (at least in internal validity) than Model
A (Tallmadge & Wood, 1978; Murray et al., 1979; Echternacht,
1979). Typical of such distinctions is a statement by Linn (1979):

If viewed as research designs, the three RMC models are ranked
easily in terms of their relative internal validity. In its idealized
form Model B is a classic experimental design and ranks highest in
terms of internal validity. Model A ranks third, with Model C
somewhere in between. This ranking agrees with the stated order of
preference provided by developers of the models. (p. 25)

The quality of Model A has been questioned in several key
areas (Hansen, 1978)— the appropriateness of using the norming
sample for comparison, especially when many norm students also
receive compensatory education; the viability of the equipercen-
tile (or, more properly, equi-NCE) assumption that holds that in
the null case, the program group pre- and post-average NCEs
should be equal; the use of out-of-level testing; and the testing of
students at different times during the academic year from those
at which the norm group was tested.

While Model C is generally perceived as methodologically
stronger than Model A, it is also usually seen as more difficult to
implement. This is at least in part due to the requirement of strict
adherence to the cutoff value in assignment, to the need to
compile data for both program and comparison students, and to
the relatively more complex statistical analysis that must be
conducted. ,

The remainder of this chapter involves a consideration of
several major issues that affect each of the designs and that may
contribute to the discrepancy between their results. No claim is
made that these are the only relevant issues, or even the most
important. The discussion of these factors simply indicates that
the discrepancy is likely to be resolvable by careful consideration
of the implementation of the designs. The reader should note
again that many of these issues are likely to be operative in
settings other than just compensatory education.
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THREE POTENTIALLY BIASING FACTORS IN MODEL A

The three issues considered here in relation to Model A
concern the potential for regression artifacts, - the effects of
various attrition patterns, and the pattern of measurement over
time in relation to the normative standard of comparison. The
first two issues will be prominent in many social research
settings. The final issue is more particularly relevant to the
research tradition that relies on comparison with empirically
derived normative information for estimation of program effect.

Residual Regression Artifacts in Model A

A distinguishing characteristic of Model A is the requirement
of a selection measure that is separate from the pretest. This was
included in an attempt to avoid the commonly recognized
phenomenon of regression to the mean. Before examining
whether the separate selection measure in fact eliminates the
regression phenomenon, it is useful to review briefly the tradi-
tional presentation of the regression artifact.

It is well known that when a group is selected from one end of
a distribution of scores their mean on any other measure will
appear to ‘‘regress’ toward the overall mean of this other
distribution. If the selection measure is a pretest and the other
measure a posttest, students will appear on the average to change
even in the absence of a program. The amount of regression to
the mean that occurs between any two measures, X and y, can be
specified. A group may be chosen from the lower end of the
distribution of variable x as shown in Figure 6.2. When the
standard deviations of the two distributions are equal (e.g., they
are in standard score form), the correlation between the two
measures is a direct reflection of the amount of regression to the
mean. In fact, the symbol for the correlation, r, was originally
used to signify regression in this sense. Specifically, 100(1-r,y)
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Figure 6.3 "Residual Regression Artifact” in Model A
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The size of the residual regression artifact in Model A depends
entirely on two correlations, r,, and r,, where these are
correlations between standardized variables. If r,, = r,,, there will
be no residual regression unaccounted for. If r,, > r,, some
regression to the mean will be unaccounted for by the separate
selection measure. If r,; < r,,, there is actually regression away
from the posttest mean and the program students appear to lose
ground from pretest to posttest. In order to judge whether a
separate selection measure removes the regression artifact, one
needs to determine which of the three patterns.of correlations, if
any, is typically obtained.

In general, it is reasonable to assume that correlations are
higher the closer in time two measurements are taken. Thus, over
time, repeated measures of the same variable tend to show
progressively smaller correlations with the first measurement.
The size of the correlations r,, and r,,, therefore, depends on two
factors—the time between the measurement of x, y, and z, and
the rate at which the correlations erode over time. Figure 6.4
shows a hypothetical erosion pattern and two measurement
scenarios. In the first case (left side of Figure 6.4)the pretest and
posttest (x; and y,) are measured while their correlations with the
assignment variable are eroding at a rapid rate. In the second
case (right side of the graph), both measures (x, and y,) are taken
after the greatest erosion has occurred. In both scenarios, the
same time elapses between the pretest and posttest. While a
residual regression artifact occurs in both cases, it is much
smaller in the second case than the first.

Theoretically, if one knows the correlations r,, and r,, in the
absence of a program effect, it should be possible to adjust
estimates of gain to account for the residual regression artifact.

-However, corrections of this type are hazardous for two reasons.

First, they depend on the pattern of temporal erosion in the
correlations and this is likely to vary for different traits, and even
perhaps for different tests of the same attribute (e.g., different
levels or forms_of achievement tests). Second, even if the overall
rate of erosion is reasonably known, accurate estimates of the
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Figure 6.4 Hypothetical Correlation Erosion Pattern

correlations in the absence of a program effect are necessary. This
would necessitate use of some type of comparison group or, for
Model A, use of published correlations over time. In either case,
the quality of such corrections would be doubtful and only serve
to increase the assumptive character of the design.

The degree to which the discrepancy in results reported earlier
may be due to the residual regression artifact is difficult to
estimate for the same reason that it is hard to devise corrections
for the residual regression bias. However, it is possible to get
some empirical confirmation that a bias is occurring by examin-
ing the pattern of results obtained for Model A in Florida. This
can be done by classifying the studies into NCE intervals on the
basis of group pretest means. If a residual regression artifact is
operating, gains for groups who scored low on the pretest should
be greater on the average than gains of the higher pretest scoring
groups. Table 6.1 shows the average gain for projects which are
grouped into ten intervals of five NCE units each, covering a
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range of 0 to 50 NCEs. Six pro jects were excluded from the table
(therefore, n = 608) because their average pretest score exceeded
the mean of 50 NCE units. These results are even more striking
when graphed as in Figure 6.5. The plot almost looks like a
theoretical description of regression artifacts. Clearly, the results
do nothing to repudiate the hypothesis that a positive bias due to
a residual regression artifact occurs with Model A. Although a
similar pattern would be expected if there were an interaction
effect between the program and the pretest, this is considered a
less plausible explanation than the residual regression artifact
one.

Attrition Bias in Model A

Although Model A requires that a selection measure be
administered to all potential participants, only program students
are given the pretest and posttest. The required analysis for
estimating gain is based on the pretest and posttest averages for
only those students who took both tests. Two attrition-related
problems tend to arise when dropouts are nonrandom. First, if

) TABLE 6.1
Average NCE Gain for Projects Grouped by Pretest Mean NCE

Pretest Mean NCE’ N NCE Gain
0-5 7 18.30
5-10 10 10.67
10-15 13 15.29
15-20 37 9.46
20-25 116 8.23
25-30 161 6.40
30-35 126 5.57
35-40 80 5.05
40-45 40 4.00
45-50 18 3.58

a. Projects with Pretest Mean NCEs that fell on interval boundaries were
assigned to the lower value interval. For example, the first interval is
actually 0-4.999. . . but was rounded for clarity of presentation.
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Figure 6.5 Average Posttest NCE for Projects Grouped by Pretest Mean NCE

only matched cases are used (as required) one can at least expect
the positive bias due to the residual regression artifact for the
matched (i.e., nonattrited) students. This may be greater or less
than the bias expected for the entire original sample depending
on whether attrition is disproportionately greater for higher- or
lower-scoring program students. In addition, attrition of this sort
obviously calls into question the use of the norming sample as a
comparison standard. '

The second attrition-related problem occurs if the requirement
that only matched cases be analyzed is violated. This will be
termed the unmatched attrition case. Here, if a program student
takes one test and not the other, the available test score is still
included in the group averages. While this is a clear violation of
the Title I requirements, there is some reason to believe that the
difficulty of matching pretest and posttest scores (Trochim, 1980)
leads school districts into this practice.

i
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The major purpose of this discussion is to determine the likely
effects of unmatched attrition on estimates of gain, and ultimate-
ly, the discrepancy in results. The effects of such attrition
between the selection measure and pretest, and the pretest and
posttest, will be discussed.

The typical Title I program group is composed of students
whose pretest scores will in most cases be below the population
average of 50 NCE units. If unmatched attrition is proportionate-
ly greater among students who score below the pretest mean of
the program group, a positive bias will result. This is due to two
factors. First, the remaining group will consist of the higher-
scoring program students. In the absence of any program, an
apparent gain will occur from the observed pretest mean (which
includes attrition cases) to the observed posttest mean. Second, in
addition to this gain there will also tend to be a positive
regression artifact bias from the remaining students’ pretest mean
to their posttest mean. Thus, the positive regression artifact will
augment the positive bias due to the high-scoring remaining
group. '

The direction of bias is not easily specified when there is
proportionately greater unmatched attrition from the high pre-
test-scoring program students. The remaining group would have
a lower pretest average, indicating a potential negative bias.
However, a positive regression artifact bias is also expected for
this group. Thus, when attrition occurs primarily among high
pretest program students, a positive regression artifact bias
competes with a likely negative bias resulting from the low
scoring remaining group.

Consider a hypothetical example of how a positive bias can
result when attrition occurs among the higher pretest scorers. It
is assumed that the entire program group had a pretest mean of
20 NCEs and that after attrition of the higher scorers, the
remaining group would have a pretest mean of 15 NCEs. The
observed pretest mean is therefore 20 NCEs, but the expected
posttest mean in the absence of the regression artifact would be
15 NCEs for an apparent negative bias of -5 NCEs. However, if
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in this example the standardized r,, = .8, there would be a
po i+ -~ssion to the population posttest mean of 20% (i.e.,
100 (1-.0, . ) of the distance between the expected posttest
mean of 15 NCL.. «. the population mean of 50 NCEs. Thus,
there would be a positive regression artifact bias of 7 NCE units
(i.e., .2(50-15) = 7) and there would be an overall positive bias of
2 NCE units. '

Several conclusions are reasonable at this point. First, if
unmatched attrition occurs primarily in the lower pretest scorers
there will be a positive bias. Second, slightly greater rates of
attrition among higher pretest scorers are also likely to result in a
positive bias (although this would be less than for attrition of
lower scorers). Finally, the attrition bias will be negative in
direction only when there is a disproportionately great enough
attrition rate among higher scorers so that the resulting loss due
to lower-scoring retainees exceeds their gain due to regression to
the mean.

Because attrition rates for various pretest levels are not -

routinely reported in the Title I literature, it is difficult to say
what pattern of attrition is most common. With no knowledge of
the distribution of attrition rates it is reasonable to conclude that
attrition between the pretest and posttest will in general be more

likely to result in a positive bias. One can, however, obtain a

rough idea of the likely attrition pattern by examining the major
sources of attrition. Kaskowitz and Friendly (1980) report
several likely sources:

—  students entering and leaving a school or district

—  students entering and leaving a project )

—  students being held back or double promoted in grade progression
—  absence on test dates

— invalid test administration

— loss of data in processing and editing

—  deliberate omission of data

For most of these factors, it is plausible to argue that attrition
would be more likely to occur at a greater rate among the lower-
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scoring students because these students would be more likely to
miscode answer sheets, have greater absenteeism, be held back a
grade, be discouraged and leave the program, and so on. If this
assessment is correct, greater confidence can be placed in the
likelihood of a positive bias due to unmatched attrition.

The more realistic case of attrition between both the selection
and pretest and the pretest the posttest is more complex but leads
to similar conclusions. Attrition bias may either inflate the
pretest program group average or, less often, result in a lower
pretest mean for the reasons discussed above. Because lower or
higher pretest means will result in different amounts of residual
regression artifact bias, attrition between the selection measure
and the pretest may affect the amount of bias resulting from
attrition between the pretest and posttest. However, even in this
three-variable case, the direction of bias will still be positive
except when there is enough attrition among higher scores to
enable the negative bias of the low-scoring remaining group to
exceed the residual regression artifact bias. On this basis, it is
reasonable to conclude that the discrepancy in results yielded by
Model A and Model C may in part be attributable to a positive
unmatched attrition bias in Model A.

Time-Of-Testing Bias in Model A

Model A relies on a comparison between the program group
and what is termed here a “pseudo-comparison” group, which is
a hypothetical subsample of the norming group that is similar to
the program students. It is important, therefore, to examine how
test norms are developed in order to determine the reasonable-
ness of such a comparison.

Typically, test publishers developed norms for a test on the
basis of an annual test administration. Thus, samples of students
might be tested in the fall of one year and the fall of the next or in
the spring of one year and the spring of the next. In the typical
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Model A scenario, the selection test consists of an annual district-
wide achievement test in the spring; the pretest is based on fall
administration of the test to the program students and the
posttest is comprised of the annual test given in the following
spring (which then becomes the selection test for the subsequent
year). If a test were normed on the basis of annual test samples,
the pretest or posttest in Model A would have to be compared
with interpolated norms. Thus, if the test had been normed based
on fall-to-fall testing, the spring norm would be an interpolation,
while if the test had been normed spring-to-spring, the fall norm
would be an interpolation. As Linn (1979) explains,

Normatively derived scores for other testing dates were usually
obtained by linear interpolation with the three summer months
treated as a single month. That is, it was assumed that growth
was linear for the nine month school year and that one additional
month's gain was made during the summer.

Thus, when the test was normed based on annual administra-
tions, either the obtained pretest or posttest in Model A is
typically compared with an interpolated norm. The question here
is whether the difference between an obtained and interpolated
norm is the same as the difference that would be found if an
actual testing were substituted for the latter.

Several attempts have been made to answer this question using
data based on fall and spring norm testings. The results of these
studies must be interpreted cautiously because they are often
based, at least in part, on cross-sectional rather than longitudinal
data. However, the general pattern of results indicates that larger
gains occur between fall and spring testings (Beck, 1975; David &
Pellavin, 1977; Linn, 1979), than between spring and fall testings.
This is typically attributed to a lower rate of growth over the
summer months.

A hypothetical graph of changes across testing times that is
similar to those reported in the literature (Linn, 1979) is depicted
in Figure 6.6. Such a pattern might be obtained if the same group
of norm students were measured in the fall and spring for two
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successive years, assuming that there are no clear floor or ceiling
effects at any testing. It is important to recognize that the solid
line depicts the growth-pattern expected in norm scores even with
the typical ‘“summer growth” correction. The dashed lines
between the two fall tests and two spring tests indicate hypotheti-
cal linear interpolations that might be used to obtain estimates of
norm group performance for points in time between the norm
testing administrations. In general, the figure shows that when
the test has been normed with fall-to-fall tests, the spring norm
will be underestimated, while with spring-to-spring norming the
fall norm will be overestimated.

Assuming that this pattern is accurate, it is relatively easy to
determine the bias that may result from using tests that are
normed on the basis of such annual testings. If the test that is
used in a particular Model A design was normed with fall-to-fall
testings, the spring norm will be an underestimate of the true

projection
overestimates
Fall norm

Mean
Test
Score

\ projection
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Spring norm
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Fall Spring Fall Spring

Figure 6.6 Time-of-Tes('ing Bias
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norm - ' "n the absence of a program effect, the program
group will appear to improve from fall to spring simply because
the norm posttest value is underestimated. Similarly, if the test
that is used was normed using spring-to-spring testings, the fall
norm will be an overestimate of the true norm value. Thus, in the
absence of any program effect, the Title I group would appear to
be lower than the estimated pretest norm and therefore would
show pretest-posttest improvement relative to the norm sample
simply because the pretest norm is an overestimate. In this
hypothetical scenario, it is clear that whenever the test that is
used was normed on the basis of annual testings the estimate of
program effect is likely to be positively biased.

In practice, the situation is likely to be more complex. Tests
may not be administered near the norm or interpolated norm
testing dates and it may be necessary for a school district to
attempt to construct local interpolations or extrapolations appro-
priate to local test administration times. In addition, in order to
avoid floor and ceiling effects, it is sometimes necessary to use
different levels of a test for pretest and posttest. In this case,
norms are dependent on the standardized scales developed by the
test producers to “vertically equate’ scores from different levels
of a test. In any event, it is clear that the use of normative test
data in Model A relies on assumptions about change in the
norming sample. In many cases these assumptions are unverified
or, as in this case, actually suspect.

To some extent this time-of-testing problem can be reduced if
tests are normed on the basis of fall-to-spring-to-fall longitudinal
norm samples. There is some indication that test producers
appreciate this fact and have modified or are considering
modifying their norming procedures. Nevertheless, this is a
relatively recent trend and it is a fair assumption that the
majority of the 614 Model A projects that were aggregated in the
analysis described earlier relied on tests that were normed on the
basis of annual testings. Because of this, it is reasonable to
conclude that the discrepancy in the results generated using
Model A and Model C can be attributed, at least in part, to a
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positive bias that results from time-of-testing problems in Model
A.

THREE POTENTIALLY BIASING FACTORS IN MODEL C

The discussion above demonstrates that Model A is likely to
yield positively biased estimates of program effect as a result of
the three factors considered. The factors that are presented next
have an influence on Model C results—but in these cases, the
direction of the resulting bias is likely to be negative. More
specifically, these factors will tend to make programs look worse
than they actually may be. It is important to recognize that the
three factors—misassignment relative to the cutoff, curvilinear
pre-post relationships which result from poor measurement, and
errors in data preparation—are likely to arise in any implemen-
tation of the regression-discontinuity design.

Misassignment Bias in Model C

Most school districts that use Model C employ some proce-
dure that makes it possible to challenge the assignment of a
student by the cutoff criterion. Usually a challenge is initiated by
a teacher, although the source may at times be a parent or school
principal. A greater proportion of students tend to be challenged
into the program group than out of it. In some cases, the
teacher’s judgment is considered sufficient evidence to warrant a
change of group status, but more often the student is retested and
a cutoff score on the retest is used as the criterion. Challenges can
be motivated by an honest belief in the fallibility of the test
instrument, by political factors or favoritism, by a reluctance to
deny potentially useful training to “borderline” students, and for
a number of other reasons. Trochim (1980) points out that the
practice of challenging assignment is widespread, that there is
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often no limit put on the number of times a student may be
retested, and that challenges sometimes go unreported.

The central question here is whether misassignment relative to
the cutoff score might be related to the pattern of gains described
above. It is useful to construct a hypothetical'example to help
clarify what might occur. In this example it is assumed that all of
the challenges in a district are those which shift students into the
program. If the challenges are reasonable, these might be
students who parents, teachers, or administrators feel scored
artificially high on the pretest—their true ability should have
placed them in the program group. Furthermore, one might
expect that these lower-ability students would on the average
perform more poorly on the posttest than others who received
the same pretest scores. An extreme version of this hypothetical
group is indicated by the darkened portion of the graph in Figure
6.7. It is important to recognize that the graph portrays the
original bivariate distribution and would be the same whether the
challenge is based on teacher judgments or retest scores.

There are a number of potential strategies for analyzing data
when challenges have been allowed. For example, if the evaluator
is not aware of the challenges, the data would be analyzed using
the assignment indicated by the pretest cutoff score. For the null
case depicted in Figure 6.7 no bias would be expected. However,
if the program is effective, the challenged cases should evidence
this effect. If the analysis assumes that these students are in the
comparison group, that group’s posttest scores would be in-
creased near the cutoff point and the slope of the comparison
group linear regression line would be attenuated somewhat
resulting in an underestimate of the program effect. If the
challenges are reported, one might be tempted to analyze the data
on the basis of actual assignment (i.e., as challenged). Here, in
both the null and effect cases the slope of the program group
linear regression line would be attenuated somewhat (due to
inclusion of the low pretest scoring challenged students) and a
negative pseudo-effect would be expected. Another strategy
would be to include the challenge cases in the analysis using their
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Posttest

Pretest

Figure 6.7 The Effect of Challenges on Within-Group Slopes

retest scores in place of the pretest. This would have the effect of

increasing the number of the cases immediately below the cutoff
value that also tend to fall below the linear regression line as
shown in Figure 6.7. The addition of these cases in the program
group and their removal from the comparison group would serve
to attenuate the slopes of both linear regression lines and again
one would expect a negative bias. In all of these analyses of this
hypothetical “reasonable” challenge scenario, one expects that
the true program effect will be underestimated.

A similar scenario can be constructed for the case of challen-
ges that move a student out of the program. If it is assumed that
these cases are most likely students who scored just below the
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cutoff on the pretest and would be expected to do better than
average on the posttest (because their pretest score underesti-
mates true ability), one again expects to find negative pseudo-
effects because their removal from the program group and
inclusion in the comparison group will always act to attenuate
the slopes of the linear regression lines in each group.
These intuitions about the likely direction of misassignment
bias can be illustrated through some simple simulations. First,
data ar. randomly generated for 1000 cases using the following

models:
x=T+ e,
TE =T + erg
RE = T + egg

Where T is true ability, all e’s are independent random error, X is
the pretest, TE is the teacher rating of student ability, and RE is
the score obtained for students who are retested. Thus, it is
assumed that the pretest, retest, and teacher rating are all
imperfect but fairly reliable measures of true ability (e.g.,
achievement in reading or math). Second, assignment to program
or comparison groups is constructed for three cases:

Sharp assignment:
20= 1 if x < O
= 0 otherwise
Teacher challenges:
z1= 1 if x < 0 or (x > 0 and TE < 0)
= 0 otherwise

Retest challenges:
22= 1 if x < 0O or (x > 0 and (TE < 0 and RE < 0))

= O otherwise

The cutoff score of zero is arbitrary and represents the theoretical
pretest mean. The case of sharp assignment is included as a no-
bias comparison. The program group consists of the lower pretest
scorers and challenges are only in the direction of into the
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program. It is assumed that retests are given (i.e., can be a factor
in assignment) only if a teacher recommends it (i.e., the teacher
first judges that the student was misassigned). Thus, the retest
challenge procedure is more restrictive in these simulations than
the teacher challenge procedure. Third, posttest scores can be
calculated under the general model:

y=T+ gz + ¢

where y is the posttest, g is the program effect (either O or 3
units), and z is the dummy assignment variable (either z0, z1, or
z2). Thus, the posttest is also a fallible measure of ability and is
linearly related to the pretest through the common true score, T.
Finally, the following analyses are applied to the simulated data:

(1)  No challenges, analysis using actual assignment. This case is included
as a no-bias comparison case.

(2) Teacher challenges, analysis using actual assignment. This analysis
would only be feasible if teachers report the challenges and the actual
challenged assignment variable (z1) is used.

(3) Teacher challenges, analysis using pretest assignment. Here it is
assumed that the analyst is not aware of the challenges and that the
original pretest assignment variable (z0) is used.

(4) Retest challenges, analysis using actual assignment. Again, this
analysis is only feasible if the challenges are known to the analyst and
the actual assignment variable (z2) is used.

(5) Retest challenges, analysis using pretest assignment. Again, it is
assumed the analyst is unaware of the challenges and that the pretest
assignment variable (z0) is used.

(6) Retest challenges, analysis using retest scores of challenged cases.
Here the retest scores are substituted for the pretest scores of
challenged cases.

(7) Teacher challenges, challenged cases excluded.

(8) Retest challenges, challenged cases excluded.

Each analysis is conducted using the following two-step proce-
dure:

Step iy = B+ Bx + Pz + e
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distributed variables, unidirectional challenges, linear pre-post
relationehi= fairly reliable measurement), misassignment in the
compensatoiy o teation case tends to lead to underestimates of
the program effect using Model C. Because of this, the misassign-
ment problem must be considered a plausible explanation for at
least part of the discrepancy in the results yielded by Model A
and Model C.

Measurement-Related Bias in Model C

Two separate measurement issues are discussed here, both of
which are likely to have an effect on the pattern of gains obtained
with Model C. The first problem concerns the potential for floor
and ceiling effects in the measures. These would result, respec-
tively, from a test that is either too hard or too easy for the group
in question. For example, if the test is too difficult, a number of
students will receive the lowest possible scores. Their scores will
not be indicative of their true ability because the test does not
measure that low. Floor or ceiling effects on the pretest would
tend to result in a more positive pre-post slope in the vicinity of
the floor or ceiling. Conversely, such effects on the posttest
would tend to attenuate the slope in the vicinity of the floor or
ceiling. The situation becomes especially complicated when
considering that it is possible to have a floor or ceiling effect or
both on either the pretest or posttest or both.

The second measurement issue of relevance is related to the
chance level of the test. The concept of chance level can best be
understood through a simple example. A hypothetical multiple
choice test has 100 items, each having four possible answers. If a
respondent guesses on all 100 items, one would expect by random
chance alone that the average test score would be 25. Thus, any
student scoring in the vicinity of or lower than a score of 25 could
have been guessing on the exam. If a student guesses on the
pretest and either does or does not guess on the posttest, there

"Negative Gain'' 203

should be no statistical relationship, or correlation, between the
two tests. Assuming that a portion of the students are guessing,
cases with pretest scores near the chance level are likely to exhibit
a lower pre-post correlation, and consequently a lower pre-post
slope, than cases having higher pretest scores.

The direction of bias that would result from either of these two
measurement problems depends in general on both the nature of
the problem and the placement of the cutoff. For example, if
there is a chance level or posttest floor effect, the pretest-posttest
relationship might be best described by a line like the one shown
in Figure 6.8. With a high pretest cutoff value, the figure
demonstrates that estimates of gain would be negatively biased.
Conversely, with a low cutoff, estimates would tend to be
positively biased.

It is possible to get some indication of the likely direction of
bias in practice by examining gains in relation to typical cutoff
percentiles. The median cutoff percentile for the 273 Model C
cases from the State of Florida described earlier is 28.6 with a
range of 7 to 50. It is difficult to know whether this median value
tends to be above or below typical chance level values or posttest
floor ranges without examining the specific chance levels for the
tests that were used. Nevertheless, it is possible to get a rough
idea of the effect of cutoff placement alone on the estimates of
gain by looking at the average gain for all projects with cutoffs
above and below the median cutoff percentile. When cutoff
values were below the median, the average gain was .2563 (SE =
.720) for the estimate at the program group pretest mean and
~2.3127 (SE = .737) for the estimate at the cutoff. When cutoff
values were above the median, the average gain was —1.6527 (SE
= .412) and -2.4181 (SE = .334) for estimates at the program
group pretest mean and cutoff, respectively. Thus, for both
estimates, the average gain tended to be lower the higher the
cutoff value (although the above and below median estimates for
the analysis at the cutoff do not appear to differ significantly).
While these results must be interpreted cautiously (at least in part
because of poor reporting of or adherence to cutoffs), they do not
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Figure 6.8 Effects of Cutoff Placement and Chance Levels or Floor Effects on
Estimates of Effect
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repudiate the notion that higher cutoffs may be associated with
negative bias while lower ones may be linked to positive bias. In

any event, the potential for bias due to the placement of the

cutoff relative to the chance level of the test or floor and ceiling
effects must also be considered a plausible contributing factor to
the discrepancy between the results of Model A and Model C.

Data Preparation Problems in Model C

A large number of exclusions are routinely made in Title T

evaluations in the process of preparing the data for statistical
analysis. Cases are excluded from the analysis for lack of a pre-
post match, because the student was “challenged” or misas-
signed, because the student moved either within - the district or
out of the district, and so on. Some exclusions are likely to have a
consistent effect on estimates of gain and must be considered
plausible sources of the discrepancy in gains.

This can be illustrated with the commonly made exclusion of
grade repeaters, that is, those students who are held back a grade
from one year to the next. It is certainly reasonable to expect that
most of the students who repeat a grade are low achievement test
scorers who are eligible for Title I service. If there are a fair
number of repeaters and if these cases are routinely excluded
from the data analysis, it is likely that the program group
regression line, and subsequently the estimate of gain, will be
distorted. Furthermore, it is not unlikely that these students
come from even the lower portion of the Title I program group
distribution and that they have more than the average share of
disciplinary problems, learning disabilities, and so on. It is
possible to conceive of circumstances in which excluding such
students actually makes the Title I program look worse. A polar
case is illustrated in Figure 6.9. It is assumed that the “hard-
core” repeaters are low in true ability and therefore, score low on
both the pretest and posttest. Hypothetically, the majority of

A e SR e
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these ca:  “ould fall in the region indicated by the blackened
portion of the figure. If such students are excluded, the slope of
the = -+ ~roup regression line would be attenuated and an
apparent neguui  vain would result. A similar scenario can be
constructed for the ¢ - lusion of students who move either within
or across districts.

The effects of excluding grade repeaters can also be illustrated
through simulations. Here, a pretest is constructed using the
model

x =T+ e,

where x, T, and e, are constructed as described earlier. Next, a
dummy assignment variable, z, is constructed. Again, a cutoff of
zero is arbitrarily selected and the low pretest scorers receive the
program. Finally, the posttest is constructed

Posttest

Pretest

Figure 6.9 Effect of Excluding Title | Repeaters
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Floor on Pretest Floor on Postiest

Ceiling on Pretest Ceiling on Posttest

Figure 6.10 Hypothetical Pretest-Posttest Relationships or Floor or Ceiling Effect
on Either Measure

y=T+ gz + ¢

- where the program effect, g, is either 0 or 3 units. It is assumed

that grade repeaters on the average are the lowest in true ability,
even within the low-scoring program group. In these situations, a
hypothetical grade repeater group is excluded on the basis of
their true scores. Specifically, all cases having a true score (T) less
than _4.5 units are excluded from the analysis. As in the
previous simulations, there are n = 1000 cases in each run and
twenty runs for each condition. The same two-step regression
analysis is conducted where the first step fits the same linear
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function in both groups and the second step allows the slopes to
differ between the groups (i.e., the Title I analytic strategy).

In the no-exclusion case, as expected, results are unbiased for
all analyses. With exclusions, the Step 1 estimate of gain is —.093
(SE =.026) in the null case and 2.968 (SE = .'036) when the true
gain is equal to 3 units. When low true scorers are excluded from
the Step 2 (Title I) analysis, the estimate of gain is —.163 (SE =

.025) in the null case and 2.90 (SE = .039) when the true gainis 3.

units. Obviously, these simulations can only be considered
illustrative. . Nevertheless, they do support the idea that even
under fairly optimal conditions (e.g., fairly reliable measures,
normally distributed variables, linear pre-post relationships, less
than 8% exclusions) the exclusion of grade repeaters can lead to
biased estimates of program effect and that the bias is likely to be
an underestimate of the true effect.

Another data preparation problem that can lead to bias is the
occurrence of data coding errors. For example, matching of
individual pretest and posttest scores is usually made using the
name or ID number for the student. Both are subject to
miscoding. In addition, because matching is typically done by
computer, it is usually essential that the coding of the name be
identical on both tests. The following chapter” on research
implementation discusses a number of data preparation problems
and how they typically manifest themselves.

Problems of data preparation tend to result in bias if the
characteristic on which a data exclusion is based is nonrandomly
distributed across pretest scores. For example, if there is reason
to believe that program students move or repeat grades more
frequently or are more likely to make coding errors, exclusion of
these students’ test scores is more likely to distort the true
function and bias estimates of effect. For reasons similar to the
grade-repeater case, it may be reasonable to expect that the bias
would be negative in direction. Thus, data preparation problems
must be considered potential contributing factors to the discrep-
ancy in the results of Model A and Model C.
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SUMMARY OF THE NEGATIVE GAIN ISSUE

We can reach a number of conclusions on the basis of this
discussion. First, there is a discrepancy between the results
yielded by Models A and C. On average, Model A results are
slightly positive while Model C results are near zero or slightly
negative. Second, examination of the major likely contributing
factors indicates that Model A may be overestimating the true
gain while Model C is probably underestimating it. This implies
that the “truth” is likely to be somewhere between the average
estimates yielded by either model. Finally, it is clear that the
major factors that influence the potential for bias in the
regression-discontinuity design in this context are related to poor
implementation of the design. Failure to adhere to the cutoff
criterion, poor measurement, data preparation errors, and other
implementation problems occur frequently in compensatory
education, probably occur frequently in other contexts, and have
a profound effect on the validity of the results. The major
implication of this chapter is that users of the regression-
discontinuity design in any setting must attend to research
implementation issues if the results are to be credible. Because of
the importance of good research implementation for the regres-
sion-discontinuity design or any other, this topic is discussed is
some detail in the next chapter.

NOTES

1. Material in this chapter is excerpted from Trochim (1982).

2. In order to remain consistent with the literature of compensatory education, the
term “Model C” is used in this discussion. The reader should note that Model C is the
regression-discontinuity design as described in earlier chapters.

3. An insufficient number of Model B analyses are available to make a reasonable
determination of average gain and, therefore, that model will be excluded. from

consideration in this discussion.
4. The argument here is based on the Glass memo reported in Echternacht (1978).

i rrn e g e = L e



The Implementation of
Regression-Discontinuity

It should be clear from the discussion in the previous chapter
that problems in the execution of the regression-discontinuity
design can contribute to serious distortions in the estimate of
program effect. While the design may be fine in theory, its
implementation may be problematic in some settings. This
chapter considers the implementation of the regression-disconti-
nuity design in the context of compensatory education where it
has been most frequently used. The reader should recognize that
many of the issues discussed here will be as relevant in other
research contexts. Four general categories are discussed—the
implementation of the assignment, the measurement, the pro-
gram, and the data preparation—in the context of Title I of

ESEA.!
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ASSIGNMENT ISSUES

One of the distinguishing features of the regressiop-discontinu-
ity design and, in fact, the characteristic that s?ts it apart from
other pretest-posttest designs, is the use of a pretest 'cutoff value
for the assignment of students to program or comparison groups.
The need for adherence to a strict cutoff poses serious admlr'us-
trative and political problems for a school district. .The require-
ment of a sharp cutoff has been clearly stated within the Title .I
evaluation literature. The reader is referred to Campbell, Rei-
chardt, and Trochim (1979), Trochim (1980), and Goldberge.r
(1972)' for more detailed discussion of the rationale for this

requirement. . . _ .
The implementation issues of primary importance in this

section are:

The placement of the typical cutoff value.

The manner in which the cutoff is selected.

The measures that are used for assignment.

The degree of adherence to the cutoff criterion.

The effect of assignment problems on estimates of gain.

Aol s i

Each issue is discussed below.

PLACEMENT OF THE CUTOFF VALUE

In their annual evaluation reports to the State of Florida, all
but two school districts that used the regression-discontinuity
design expressed the assignment criterion in terms of a pretest
percentile or stanine. Thus, a school district might report that all
students scoring below the twentieth percentile on the pretest
would be eligible for Title I training, while all those above tlllat
percentile would not. The other two school districts in I.:lopda
reported the pretest scale score value as the cutoff criterion.
Here, the rule might be that all students scoring below a CTBS
scale score value of 340 are eligible for Title I services while those
scoring above that value are not. The way in which the cutoff
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value is reported to the state, however, is not necessarily
indicative of the way in which the assignment procedure was
handled within the school district. For example, a school district
which reported the cutoff as its pretest percentile might actually
have used a pretest scale score and simply reported in terms of
percentiles for convenience. Within the State of Florida, the
median pretest cutoff percentile was 28.6. The lowest percentile
over the two-year period studied is 7.0 while the highest is 50.0.
Thus, there never was a case reported where over half the eligible
students were assigned to Title I services.

SELECTION OF THE CUTOFF VALUE

Regardless of the value of the cutoff score, it is useful to look
at how a district chooses it. The majority of respondents at the
local level stated that they select the cutoff value so that they will
be able to have the maximum number of students served given
the available resources. However, a large number of school
districts reported the exact same cutoff percentile in 1978 as in
1979, suggesting that there is either a remarkable consistency in
the available resources and the number of eligible students, or
that school districts have some latitude from year to year in the
way in which they handle allocation of funds. One school district
reportedly chose its cutoff point in terms of standard deviation
units on the pretest. Thus, all students scoring below, say, one
standard deviation unit below the pretest mean are eligible for
Title I services while all those who score above are not.

It is worthwhile to investigate in more detail how allocation
procedures are managed at the district level. The remarkable
consistency in the cutoff percentile from year to year suggests a
fair amount of discretionary power in the allocation of funds on
the part of the district or the possibility of the existence of a
“reported” cutoff score that is different from the “real” cutoff
used for assignment. Part of the problem may be that in order for
a school district to truly allocate on the basis of the pretest
distribution, they must know the test scores in advance. If
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proposals for Title I funds that are submitted to the state are
required befare a district has the time to examine this distribu-
tion, it is pc "at they would give a reasonable guess for the
cutoff percentile .iid change this if it proves unmanageable.

MEASURES USED FOR ASSIGNMENT

§

There are essentially three ways in which a school district can
assign students to program group while adhering to a sharp
cutoff. First, they can use the same test or different levels of the
same test for both the pretest and posttest. Second, they can use
different tests for pretest and posttest. Third, they can use a
combination or composite of several tests or measures as the
pretest and some other measure as the posttest.

Most school districts use the same test for the pretest and
posttest, sometimes relying on different levels of this test for
each. There are special cases where this is not feasible. For
example, for students entering the first grade, there is not likely
to be a standardized achievement test that would be appropriate.
In this case, the district often relies on a ‘“‘readiness’ test of some
sort for the pretest and a standardized achievement test for the
posttest. Another case where using the same test for both testings
is not feasible is when there is no readily available standardized
achievement test that is appropriate. Thus, in Puerto Rico,
because there is a dearth of standardized achievement tests
written in Spanish, the pretest may be a measure of grade point
average while the posttest will be a locally developed achieve-
ment test. One reason for reliance on the same test or different
levels of the same test for pre- and post-testing is the advertised
requirement of a pre-post correlation of at least .4. Although this
is not technically necessary as mentioned earlier, some districts
report reluctance to using different tests for pre and post-testing
because of the fear that the necessary correlation would not be
obtained and the analysis would be invalid.

One of the more interesting potential assignment procedures
involves the use of a composite of several measures for the

e
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pretest. Since a major problem in adhering to the strict cutoff
seems to be the impressions of teachers, parents, or administra-
tors that certain children were misassigned, it would be useful to
attempt to quantify their implicit assignment strategies and
incorporate them directly along with a pretest. One can conceive
of an assignment measure that is a weighted average of a pretest
value, a grade point average, a quantified estimate of skill from
the classroom teacher, and so on.

The major problems with such a procedure are that it requires
a good deal extra effort, it can be arbitrary, and it makes explicit
an assignment decision that for political reasons might in specific
cases be difficult to justify. A respondent from one school district
that investigated the possibility of a composite assignment
variable claimed that the major problem occurred in trying to
determine the relative weighting of different variables. Other
respondents stated that it is likely, on the basis of their
experience, that the assignment to program group would not
differ greatly regardless of whether standardized achievement
test scores or teacher’s subjective impressions are used. Some
work that has been done on the degree to which teachers can
correctly estimate the performance of students on standardized
achievement tests shows that there is a strong correspondence
between the two measures (RMC Research Corporation, 1979).
However, much of this work has been informal and has gone
undocumented (Hill, 1979). :

The possibility that subjective impressions might be quantified
and subsequently incorporated into the assignment strategy offers
great potential and should be investigated further. Such a
strategy is not without its hazards however. One school district
which has tried it cited dissatisfaction with the results primarily
because of conflicting advice given to them by their regional
TAC. In this case, the district attempted to combine an
achievement test score with the classroom teacher’s impression of
each student’s skill. According to local officials, the regional
TAC advised them to transform the teacher rating from a
continuous scale to one where all students scoring below a given

A
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value received a score of 0. When this transformed variable was
added to the pretest score it obviously resulted in a nonnormally
distributed assignment measure and led to nonlinearity in the
analysis. In the subsequent year, the TAC corpected this advice
and suggested the use of a continuous scale. This example seems
indicative of the lack of experience with composite scales in the
Title I system. Nevertheless, with more experience, this approach
to assignment under Model C appears to hold promise.

ADHERENCE TO THE CUTOFF

Virtually every school district that was contacted initially
claimed adherence to the strict cutoff value in assignment. On
further examination most indicated that this “adherence” was
strictly nominal. Sometimes district evaluators are aware of the
extent of misassignment, while at other times this is disguised by
the procedures that are used to analyze data. For example, in
some cases, what was advertised as strict assignment turned out
to be so only because the analyst directly excluded or disqualified
cases from the analysis that were misassigned relative to -the
cutoff point. In some cases, the extent of the misassignment is
more subtly disguised. Several districts, at the time of data
analysis, simply took the pretest and posttest scores at hand, and
considered all those with pretest scores below the cutoff as
participants in the program group, while those above the cutoff
were considered comparison students. Unless this formal decision
rule was actually adhered to within schools and/or classrooms,
there is likely to be some misassignment present. Classroom
records of which students actually receive Title I services need to
be compared with the assignment by means of the cutoff or it is
impossible to detect directly the degree to which misassignment
occurs. Some districts have formal procedures for comparing the
students serviced with assignment by the cutoff, but even in these

cases the degree to which the information agrees is seldom
- A R s e
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Another problem related to adherence to the cutoff in
assignment concerns the timing of feedback from the district
Jevel to individual schools and classrooms. For example, if test
scores are processed at the district level and this information is
not forwarded to the schools or classroom teachers prior to the
beginning of Title I service, the teachers may begin service to
those who they believe will be eligible, and this will often be in
disagreement with eligibility by the test scores (Hill,. 1979). It is
difficult to assess, given the data at hand, the degree to which
such problems occur within Title I evaluation.

By far, the most frequent form of misassignment is through
formal procedures by which the assignment can be challenged.
Almost every district has some mechanism which makes it
possiblé for a teacher, principal, or parent to challenge the
assignment by the cutoff criterion. By far the most common
method for handling challenges involves retesting of the student
in question. Several problems occur at this level. First, as one
respondent stated, because of the number of challenges which are
submitted annually in his district, as many as “600 or more
among the grades” (Visco, 1980), retesting of all these students is
prohibitive. Second, there is often no limit put on the number of
times a student may be tested. Thus, as one respondent reported,
a teacher who challenges a particular child’s assignment could
have that child retested again and again until the score falls
below the cutoff value. Third, the time of retesting is critical. It is
well known that average achievement test scores in the fall tend
to be lower than those in the spring, all things being equal. As a
result, if a teacher wishes to challenge the assignment of a given
student by the spring pretest and administers a fall makeup test

_ the chances are greater that the student would have a lower score

and be more likely to qualify for Title I services. Along with this
problem, one must consider the difficulties in equating scores
given at a fall testing with those given in spring. It is not clear
whether one should use the fall test scores as they are or attempt

to transform these scores to a scale that 1s similar to the spring
scale. Most likely, students who are challenged into Title I
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programs tend to have pretest scores just slightly above the cutoff
value, (although this is not necessarily the case). One might
attempt to verify the existence of such challenges by looking for
distortions in the pretest frequency distribution in the vicinity of
the cutoff score.

It is not always clear that the existence of a challenge is
reported to the district level. For example, a challenge could
theoretically be handled entirely within a school or a classroom.
Thus, a teacher who challenges the original test score could
administer a makeup test, grade that test, assign the student to
Title I service, and never inform the district evaluator of the
procedure. Part of the problem then is related to the lack of
documentation of such cases, while the other part concerns how
it should be handled in the analysis. In any case, most districts
report using such procedures and believe that the frequency of
challenges poses significant problems for the data analysis.

The existence of formal challenge procedures tends to disguise
political factors related to assignment. It is not surprising that
this is the case when one considers that the regression-discontinu-
ity design tends to eliminate the discretionary power of teachers
and school administrators. Only in-depth interviewing and
observation is likely to turn up some of the subtle ways in which
challenge procedures can be used to political advantage. This is
illustrated in one example cited by Visco (1980):

One principal apparently insisted on having (with few exceptions)
only certain challenges approved, namely those submitted from a
particular group of classroom teachers (the principal’s old friends,
I'm told). When the coordinator spoke to the principal regarding
this, the principal emphasized that.it was her school and she had
final say. Apparently, she was right. '

Misassignment relative to the cutoff point has long been
recognized as a major difficulty for the analysis of the regression-
discontinuity design. It is important to note that there are a
variety of possible causes for misassignment, all of which might
operate in the same setting. Teachers or administrators might, for
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example, use the challenge procedure as a vehicle for showing
favoritism to certain students. Another source of misassignment
is likely to be related to administrative error. Errors in test
correction, score reporting, and the like, might lead to incorrect
test score information upon which the assignment is based.
Finally, well-intentioned teachers and administrators might be
unwilling to deny service to students who they feel are deserving
of that service. An unusual example of this type of well-
intentioned misassignment is documented by Visco (1980): -

At least one teacher (maybe it was two) told me that she would
not challenge certain students “out” of the program even though
they did not require service, because if they officially left the
program they were no longer eligible to receive clothing through
the Title 1 clothing component-grant. Instead she just stopped
servicing those students and never reported it to Title I
administration. . . . Obviously, it affects the evaluation, but I have
no way of knowing the extent to which it occurs.

ASSIGNMENT PROBLEMS AND THE ESTIMATE OF GAIN

An important question is whether program estimates are
distorted due to assignment problems. Two possibilities are
discussed here. First, if the pretest-posttest distribution is nonlin-
ear, the placement of the cutoff can affect the gain. Second, the
manner in which misassigned cases are treated in the analysis can
distort the program effect. We can indirectly examine the effect
of cutoff placement by looking at the average gains for those
using a high one. When the 273 gains obtained from the State of
Florida are dichotomized at the median cutoff percentile, those
school districts having a cutoff below the twenty-eight percentile
had an average gain of -2.31, while those who had a cutoff above
the median of 28.0 had and average gain of ~2.42. It is not clear
then that there is any difference in the estimate of program effect
for districts that differ in their placement of the cutoff. More
important is the impact which including or excluding challenge
cases from the analysis might have on estimates of program
effect. This was described in Chapter 6 where it was shown that
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exclusions of this sort in compensatory education settings will
tend to bias estimates of effect in a negative direction.

The issue of misassignment under the regression-discontinuity
model is important, then, for a number of reasons. First, the
results of the study can be distorted. Procedures need to be
developed for determining the extent of this distortion. This
might involve looking at the distribution of challenges relative to
the pretest scores to determine whether it is homogeneous or
tends to show a coincident jump in the vicinity of the cutoff
score, or conducting an analysis of challenge cases separate from
those which are correctly assigned, or both. Second, an investiga-
tion of the reasons for challenges and the relationship of such
challenges to test distributions is essential for developing reason-
able models for “fuzzy” regression-discontinuity designs. These
models would be useful for the generation of simulated data for
purposes of testing new and alternative analytic procedures for
the “fuzzy” case such as those described in Chapter 5. Finally, it
is important that the occurrence of such problems be document-
ed routinely and that their implications be communicated to
those responsible for evaluation at the school district level.

MEASUREMENT ISSUES

The assumption implicit in most research is that the data that
is collected for analysis is accurate and has been collected
correctly. Put in other terms, we assume that the tests or
measures have reliability, validity, and are free of bias. Because
most Title I evaluation relies upon the use of standardized
achievement tests, issues related to who administers the test,
when it is administered, which test is given, the scales on which
scores are reported, and the possibility of falsified or “revised”
scores are important in considering design degradation.

For convenience, these issues are divided into four topics:

(1)  Test Administration
(2) Test Characteristics
(3) Test Problems
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(4) Data Maintenance and Access

Each of these are considered especially in terms of their potential
for distorting estimates of program effect.

TEST ADMINISTRATION

First, it is important to consider how the test is administered
and the problems that might arise in the administration. School
districts differ considerably in the manner of administration. In
some cases, the school district requires that all schools be tested
during the same week under specific conditions. This might
include testing of all students within the school in the same
setting, such as an auditorium or a school gym, or might allow
each class to test within its classroom. Sometimes the test is
administered by district personnel while at other times individual
classroom teachers are in charge. Similarly, the test can be
corrected by the teachers themselves, by school personnel, or at
the district level. An enormous number of factors can affect the
test context, but for our purposes, we are primarily interested in
those which differentially affect program or comparison group
students. '

Any conditions other than pretest scores that serve to target
students as either potential program or comparison group
participants should be considered suspect. If, within a particular
classroom, Title I students tend to sit in a preassigned section of
that classroom, it is possible that this “segregation” can lead to
differential attitudes or behavior at the time of testing. Under
these conditions, for example, Title I students from the previous
year, when taking the next year exam may have more anxiety
because of fear of assignment into Title I training. In other ways,
the teacher or test administrator might subtly communicate
differently with Title I and comparison students. This can
manifest itself in the instructions, in offhand comments or in any
behavior that tends to confirm the segregation. Similarly, control
students might display more anxiety concerning the test because
of their fear of being assigned to Title I programs. Generally, any
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actor that creates different expectations or anxieties in the
jifferent program groups can have an adverse effect on the
research that is conducted. These factors tend to change the
scores for one group and not the other, and at the point of data
analysis might be confused or mistaken for an effect of Title I
service. |

Another troubling factor concerns differences in testing condi-
tions between classrooms or schools. Again, such factors will
only affect the results if they are manifested differentially within
subgroups. Thus, if those classrooms with higher proportions of
Title I students also happen, through circumstances or by plan,
to have systematically worse or better facilities, classrooms, and
so on, the results might be affected.

Other seemingly more mundane problems related to the
processing of the test might affect results seriously. This is
especially true when a large number of people have responsibility
for handling the test administration. Thus, when the tests are
processed by classroom teachers, problems related to miscoding
of information often arise. Several respondents mentioned prob-
lems of this nature such as miscoding of identification numbers,
names, sex, age, and so on. Some problems, such as the
occurrence of 80-year-old first graders (Visco, 1980) can be
flagged at the district level, although it is not clear that most
districts have procedures capable of doing this. Especially
important in the case of Model C is the coding of student names
or ID numbers, because it is necessary to match up pretest and
posttest scores for each student. Some of these problems will be
discussed in more detail later.

Another problem related to administration concerns when in .

the school year the test is given. It is commonly found, for
example, that average achievement test scores tend to be lower
for fall testings than for the previous spring testings. This is

sometimes attributed to a degradation of skills due to summer-

vacation, lack of practice, and the like. While this is a far more
serious concern under Model A because using a fall pretest
tmsnnd nF a enrino nretest will tend to inflate gains, this problem
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can affect Model C results if, for any reason, the “loss of skill” is
differential between the program and control groups.

TEST CHARACTERISTICS

_ Another problem related to testing concerns which test is
given. For this study, it will be assumed that the test is an
appropriate reflection of the skills that are likely to be affected by
Title I training. This is an important and difficult issue, and one
that lies outside the scope of this work (see for example, Linn,
1979). More germane are questions related to the level of the test,
procedures for makeup testing, and so on. One issue that is
important in determining the use of Model C concerns the need
to administer non-English exams to some students. Because there
is a lack of achievement tests in languages other than English
that have been appropriately normed, such places as Puerto Rico,
the Northern Mariana Islands, Guam, and so on, are more likely
to use Model C, which does not explicitly require the translation
of scores to norms and thus encourages use of locally developed
tests. This might also be a problem in large metropolitan areas
where a considerable proportion of the student population is
composed of foreign-speaking students.

An issue of more widespread importance concerns the level of
test that is administered. Most achievement tests that are
currently marketed have several different levels or forms of the
test designed to measure different levels of achievement or skill.
Usually, the test maker will recommend a particular test level for
a given age group or grade level. While the assigned test level is
likely to be appropriate for the majority of students in any grade,

it will tend to fail precisely where the most accurate information

is desired for purposes of Title I evaluation, that is, at the lower
end of the testing distribution.

The issue of choosing the appropriate test level is related to the
potential for floor and ceiling effects, and the effect of the chance
level of the test. Since most Title I students come from the lower
quarter of the test distribution, if that test is too difficult, one is
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likely to find a floor effect differentially affecting the program
group. Several suggestions have been offered to avoid test level
problems, most notably, the idea of “out-of-level” or functional
level testing. This is commonly implemented in one of two ways.
First, if the district is concerned about the possibility of floor
effects, they could simply require that each grade be tested at the
next lower level of test, although this obviously increases the
potential for ceiling effects. A second approach is to allow
individualized testing. Here, the classroom teacher or some other
appropriate and knowledgeable administrator, assigns whatever
level of test is most reasonable for any given student. Within the
same grade, several different levels of the same test might be used
for students who are believed to have different ability. The major
problem with individualized testing stems from the fact that at
some point these test scores must be converted to a common scale
for purposes of analysis. Thus, one must rely on “extended”
standardized scales provided by the test makers and obtained
from norming samples of students who received multiple levels of
the test. While the use of out-of-level or functional level testing
holds promise for Title I evaluation, especially when Model C is
the method of choice, one must be careful to anticipate the
special problems that occur when moving from on-level testing to
one of these procedures.

A related question concerns the scales on which the scores are
reported and on which the analysis is based. Most test makers
will report test results on a variety of scales such as raw score,
extended standardized score, local standardized score, and so on.
The issues involved in converting scores from one scale to
another for the most part are outside of the scope of this work.
As a general recommendation it is probably best in conducting an
analysis to rely on the raw scores for developing estimates of gain

and to convert these estimates into NCE units for reporting

purposes. By using the raw scores, one can for the most part
avoid concerns about the quality of various standard scales
provided by the test maker.
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Another issue related to test characteristics stems from the
finding that students first entering grade school are likely to
differ considerably in their ability to read or to handle simple
mathematics problems. However, after several years of educa-
tion, it is more likely that the ability levels will become similar.
One might expect, as a result, that estimates of program effect
will be higher at higher grades where tests are more likely to
reflect ability better. There is some corroboration for this notion
in the analyses of Model C results from the State of Florida.
Across all Title I programs (n = 273), there was a tendency for
test results to be more positive for the higher grades, but whether
this is due to developmental phenomena or other factors such as
better measurement, better training, loss of less intelligent
students, and so on, is not certain.

Another issue related to the quality of test information
concernis the fact that standardized achievement tests are de-
signed to discriminate best near the middle of the test distribu-
tion. For the most part these tests are constructed to yield good
estimates of average performance for any given group. Thus, the
tests are most fallible at the tails of the distributions. This is
exactly where the most precise information is desired in Title I
evaluation because program group cases tend to be confined to
the lower end of test distribution.

TEST PROBLEMS

Some of the most serious measurement problems for Model C
result from factors which distort the pretest-posttest functional
relationship and consequently, estimates of program effect. Two
such factors, floor and ceiling effects and chance level perfor-
mance, are described here.

Floor and ceiling effects result, respectively, from a test that is
either too hard or too easy for the group in question. For
example, if the test is too difficult, a “floor” effect results because
most students will receive a low test score and consequently the
distribution will be positively skewed. The test will not sufficient-
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ly discriminate between students of different ability who all
receive low scores. The issue is especially complicated here
because it is possible to have either a floor or a ceiling effect or
both on either the pretest or the posttest or both. In Figure 7.1,
several expected pre-post patterns for various combinations of
floor and ceiling effects are depicted. The figure shows that if
there is a floor effect on the posttest, the program group slope
would be likely to be lower than the comparison group slope.
Similarly, the same pattern would result if there is a ceiling effect
on the pretest. Either of these could occur in practice. To
consider the likelihood of such occurrences one must look at the
test or tests that are used. Assuming that the same test is used for
both the pretest and posttest, it seems more likely that one will
have a floor effcct on the pretest and a ceiling effect on the
posttest (assuming that subjects grow or gain in skill between the
testings). Thus, in the case where the same test is used both times,
it seems unlikely, or less likely, that floor and ceiling effects
would yield the pattern of negative gains commonly attained as
described in Chapter 6.

The situation becomes more complicated if different tests or
different levels of the same test are used for the pre- and posttest,
as is commonly the case in Title I. Here, depending upon the
difficulty of either task, one could get the floor effect on the
posttest or the ceiling effect on the pretest that could yield a
lower program group slope and result in a negative gain. Thus,
for any given analysis, the likelihood that a ceiling or floor effect
results in a lower program group slope must be assessed within
the context of the tests that are used. As a potential source for the
observed pattern of negative gains mentioned earlier these effects
cannot be ruled out.

Another measurement related problem that could result in a
lower program group slope than control group slope and
consequently in negative gains, is related to the chance level of
the test. The chance level issue and its impact on Model C
estimates are discussed in Chapter 6. It is important to recognize
lat thora ic a difference between a chance level effect and a floor
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effect. A floor effect occurs when there is value on a test below
which students cannot score even though their ability would
indicate that they should. A chance level effect occurs when
students respond to questions by chance or guessing. A floor
effect should be evidenced by an absolute flattening of the
distribution at the floor of the test, whereas a chance level effect
allows for test scores on both sides of the chance level. Thus, it is
theoretically possible to have either a floor or chance level effect
or both in any set of data.

The relationship of the chance level of the test to the cutoff
score in the regression-discontinuity design has been investigated
by Visco (1980). Generally, he finds that in most cases the cutoff
score is in the vicinity of or lower than the chance level of the
test. While it is impossible to say that for these cases all those in
the program group were guessing, it is not unlikely that a large
number of students were. In this regard, it is important to
determine whether the instructions of the test explicitly encour-
age guessing. In addition, in the 273 Florida analyses, the median
value for the cutoff was about the twenty-eighth pretest percen-
tile and one can infer that it is quite likely that the cutoff is often
very close to or even below the typical chance level for the tests
that are used. Thus, in the case of Title I evaluation, it can be
assumed that this phenomenon can result in the lowered program
group slope and, at least in part, the resulting pattern of negative
gain estimates described earlier.

DATA MAINTENANCE AND ACCESS

One area that has received little attention from methodologists
concerns processing of test information. Many school districts
had little experience prior to the initiation of the current Title I
evaluation system with processing vast amounts of achievement
test data for purposes of analysis. There are several types of
problems that can occur in this context. First are problems of
miscoded information that can result from the students them-
selves or from the test correctors. Second are errors in processing
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the test made by the test producer or the company that markets
the test. Third are errors made at the school district level such as
calculation mistakes or errors made when using tables to convert
scores. Fourth are problems related to accessing the.data and
correctly processing the data for purposes of analysis. .
Problems of coding are illustrated well by the difficulties
involved with trying to match pretest and posttest scores by
computer. For example, it is necessary to match the data in some
districts by name of student before conducting the analysis. In
one case, the test that was used allowed 12 columns for the last
name, 6 columns for the first, and 1 column for the middle initial.
Ideally, one would like to match students on the basis of an exact
correspondence between all 19 columns of the name field on the
pretest and posttest. However, in practice, there are many ways
in which the name for the same student can be miscoded on
different tests. Some of the problems detected when matching

data include:

—Code “long” name one time, “short” name the other:
SMITH, CATHER
SMITH, CATHY

—Code middle initial one time, not the other:
JONES, JOHN M
JONES, JOHN

—Errors (keypunch or entry) leading to “unlikely” names:
ADKINR instead of ADKINS ’ »
ALBRECNT instead of ALBRECHT
MAAK instead of MARK

__Different coding of name due to number of columns allowed:
SAMANT OR SAMATH for Samantha
JACQUL OR JACQUE for Jacqueline

—“Joking” or suspicious names:
MOUSE M
DUCK D

—Placing middle initial in first name field:
TERREN A vs TERRYA
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—Extension of long name into next field (e.g., if first name and
middle initial are Vincent E.):
VINCEN E VINCEN T

—Coding of abbreviation of first name:
ROBT instead of ROBERT

— Legitimate name change from one testing to another:
CLAY to ALI

At the point of actually matching the cases, problems like these
can act to prevent a successful match.

One might attempt to eliminate some of these problems by
reducing the amount of information used to match, but this will
lead to more frequent mismatches. For example, for the first 100
alphabetically sorted cases (including both pretest and posttest)
in one school district, use of a 19-column match using the
complete name (last, first, and middle initial) yielded 21 matches
(i.e., 42 cases were paired). When the number of columns was
reduced to the first 15 (last name and first three letters of first
name), 28 matches were found (i.e., 56 cases were paired). Other
variables might be included to improve the match such as sex,
age, race, school, and so on, but each of these will have its own
errors and their addition may considerably complicate the match
procedure. In general, the more information included in the
match field, the greater the probability of excluding a legitimate
match due to coding errors. Conversely, the less information
included, the greater the chances of obtaining illegitimate
matches. Perhaps the best way to deal with matching problems is
to match as conservatively as possible (i.e., include many
matching variables), and, for cases that do not have a match,
attempt to determine the reason (e.g., did not take both tests,
miscoding of answer sheet by student, error in keypunching of
data), making corrections where possible.

The matching issue is important for two reasons. First, the
need to match cases with Model C is often cited as a factor in
favor of choosing Model A that is often incorrectly perceived as
not requiring matching. Second, there is good reason to believe
that matching problems related to miscoding of answer sheets
will be more prominent in the treated group that is composed of
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lower-achic . ¢ students. This leads to differential “exclusions”
between the groups that, in turn, have the potential of biasing the
estimates of program effect.

A second issue related to data maintenance concerns errors
that are made by the test producer or corrector. Most districts
that use standardized achievement tests have them corrected by
either the test producer or using automated p'rocedures within
the district itself. A number of problems can occur at this stage
that have serious effects on the analysis. For instance, one
respondent reported receiving the achievement data for the
school district from the test company and subsequently discover-
ing the wrong correction key had been applied in processing the

data. Obviously, had this not been detected the results for that -

district would have been totally erroneous. In another district,
pre- and posttest scores were matched up by the test producer
using ID numbers that were assigned to all public school
students. Those who attended private schools were not given
numbers. For some reason, the test producer separated these data
into two groups: those with IDs and those without. Unfortunate-

ly, only the data with ID numbers were returned to the school

district. The analysis of the Title I programs for that year were
conducted and it was not until the subsequent year that the
evaluator realized that none of the private school data had been
included. It is clear that situations of this nature must be avoided
and -that procedures for doing so need to be developed.

In an excellent paper, Crane and Maye (1980) examine the
frequency and effect of three types of “correctable” errors made
at the school district level: calculation errors, misread norms
tables, and use of incorrect norms tables. The data consisted of

aggregate values reported to the State of Illinois for two -

successive years (n = 1,788 for 1978 and n = 198 for 1979). They
found that the total percentage of aggregates having at least one

correctable error was 51.6% for 1978 and 57.6% for 1979). In’

1979, these errors alone resulted in an overall positive bias of .74
NCE units (with a range of from .43 to 3.20 NCE units,
depending on the error). In addition, “the effect of undetected
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errors on a single aggregate (e.g., for a grade within a project in a
single school district) ranges form —24 NCEs to 41 NCEs.” They
suggest that statistical quality control procedures are needed to
detect such errors and reduce their influence on estimates of gain.

Another set of problems concerns the school district’s ability
to access the data. These problems become prevalent when large
amounts of data are processed and/or when the data is comput-
erized. Sometimes the problem is exacerbated by the test
producer. For example, the CTBS standardized achievement test
reports scores in three different computer formats, depending on
the level of the test. This is especially a problem when the format
statements for the pretest and posttest differ. The application of
the wrong format to a given set of scores will obviously result in
erroneous results and sometimes these can be difficult to detect.
Other problems in accessing the data result from the processing
of magnetic tapes, errors in reading such tapes, and the like.

It should be clear that irrespective of research design, the
quality of measurement is crucial. Sometimes measurement
problems will occur differentially between program and compari-
son group students. Procedures need to be developed for
assessing the extent of these problems and their effect on the
statistical analysis. These should include methods for flagging
“outliers,” miscodings, floor and ceiling effect, and chance level
problems, as well as procedures for determining the proportion of
such errors in each subgroup of interest.

PROGRAM ISSUES

It is not the purpose of this work to comment on what types of
treatment or program produce what types of results, or to make a
statement on the substantive issues involved in Title I service.
Nevertheless, there are important issues related to the program
that can have a detrimental effect on the quality of the results.
Three problems of this nature are discussed here:

(1) Identifying recipients of the program.
(2) Determining the amount of. service received.
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(3) Determining the type of program received.

If unaccounted for, each of these can distort the estimates of
effect.

IDENTIFYING RECIPIENTS OF THE PROGRAM

Implicit throughout the Title I evaluation system is the notion
that Title I service is somehow “standardized,” that is, that all
students receive service that is “of a kind.” This is evidenced by
the existence of a system for national aggregation of gains; it
would be unreasonable to aggregate gains from different types of
programs. Within a particular program, students are usually
divided into program or comparison group, implying that on the
average they are homogeneous with respect to experiences in
their condition. In practice, however, the assumption of stan-
dardized programs is unreasonable and the analysis will be
improved if the actual service can be more accurately described.

Many of the problems related to measuring the program are
involved with the seemingly mundane task of determining who
actually received service. This was mentioned above for example,
in citing the difficulties that arise at the district level when one
attempts to match up who actually received the program with
who should have received the program according to the cutoff
point criterion. The amount of error in documenting who
actually received the program is difficult to determine given the
data at hand. However, several respondents cited examples of
cases where the assignment to program was incorrectly reported.
For example, a student who was assigned to program by the
cutoff and who is listed as having received the program, may not
have received it because the classroom teacher felt that it was not
warranted and never informed the evaluator. Similarly, some
Title I teachers may simply have too many students assigned to
them and may, as a result, have to resort to putting some on a
“waiting list” to be serviced later in the year, if at all. Often these
cases go undocumented and it is assumed that all’ students
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designated as receiving Title I service were given the same
amount and type of program. Equally difficult to detect and
identify are those students who did not receive service. For
example, those students who began the school year in a
designated Title I school but transferred to a non-Title I school
may have been eligible for service on the basis of their pretest
score, and may be listed as receiving such service, even though
they did not. As of many other problems in this context, the
extent of the problem is unknown and its effect on the analysis is
undocumented.

AMOUNT OF SERVICE RECEIVED

Even if all students could be correctly identified as having
either received Title I service or not, the amount of service that is
received is difficult to determine. Most districts report that
students receive service for a given number of minutes or hours
per day or week. This figure is usually illusory and in fact the
amount of service received tends to differ from student to
student. For example, a Title 1 teacher is likely to show
favoritism or give special instruction to those students who most
need or appreciate it. Little, if any, attempt is made to document
the degree to which students do not receive service due to such
factors as absenteeism, holidays, cancelled sessions due to school
plays, field trips, weather, and so on (Visco, 1980). In addition,
there are systematic factors that tend to reduce the time available
for instruction such as transportation time, set-up time, clean-up
activities, and so on.

In general, it would be desirable to document the degree of the
program received and to incorporate this information directly
into the analysis. Some guidance on how program implementa-
tion information can be incorporated into the analysis is provided
by Boruch and Gomez (1977).
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TYPL © "M RECEIVED

~roblem in documenting program implementation
involves de. ‘ing what type of specific instruction students
received. While . “-lv reasonable to assume, for instance, that
students who are su;, .d to be receiving reading instructions
are in fact getting some type of instruction related to reading, the
type of instruction might differ considerably from one class to
another. Any attempt to document the differences in instruction
or to standardize them within a school district is likely to
improve the quality of the evaluation, although it may pose
political and managerial difficulties.

Another problem related to type of instruction concerns the
setting in which instruction is given. The State of Florida, for
example, requires each district to report the setting under one of
five classifications: self-contained classroom, regular classroom,
pull-out small group, pull-out individual instruction, and other.
This is certainly an improvement over no information at all, but
falls short of a good description of the setting for instruction.

The most common setting is the in-class approach that
involves the Title I teacher providing service to Title I students in
the back or corner of a room while regular classroom activities
continue. Several respondents indicated that although this might
be the accepted practice it may or may not be popular with any
given Title I teacher. The essential problem is whether one
should provide instruction within the classroom (in which case
the instruction is likely to be intrusive or disruptive of classroom
activities), or whether one should pull out students for instruc-
tion in another room (in which case students are more likely to be
labeled or stereotyped in a negative way). In any event, issues

related to the program setting have important implications for .

the analysis and should be documented where possible.
Another problem related to the type of program received
concerns the instruction given to comparison students while Title
I students are receiving service. Obviously, the students do not
remain “fallow” while Title I students receive service and this
time is often dedicated to additional instruction in social sciences,
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the arts, and so on. The level of instruction may, in fact, be raised
due to the removal of the least advanced pupils. The problem
that arises here concerns whether any skills related to those being
communicated to Title I students are also being communicated to
the comparison students. This would tend to diminish their
comparative quality and reduce the differences that one might
expect between the two groups. For example, if comparison
students are receiving instruction in social sciences and this
instruction also serves to improve their skills in reading, one
would expect that the Title I students as a group would gain less
relative to the amount the comparison students would gain had
they not received such instruction.

Because of the nature of the subject matter, one might expect
that this would be a greater problem for reading programs than
for math programs. This is because other skills tend to generalize
to reading ability more readily than to math skills. On the basis
of this alone we might expect that the gains found for Title I
math programs might be more positive than those found for the
reading programs. In fact there is evidence for this proposition in
the results from the State of Florida. There, the average gain at
the cutoff for all reading programs was -3.32, while for math
programs it was -.56. One must interpret such differences
cautiously as they could possibly be attributed to other factors
such as better test reliability for math than for reading. Neverthe-
less, it is important to recognize how the existence of the
competing forms of the program or instruction might tend to
degrade the comparison.

Another problem in this same vein concerns the existence in
many school districts of state or locally supported compensatory
education programs (Visco, 1980; Parkes, 1980). For the most
part, districts attempt to keep such programs separate from Title
I programs by incorporating them into different grade levels.
Nevertheless, there are occasions where these programs overlap
in the same grade level, school, and classroom. In one such case,
students were assigned Title I service if their pretest score was
below a given cutoff, but those students within this eligible group
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who scored at the lowest end of the pretest distribution were
often put into more intensive locally funded compensatory
education programs. Unfortunately, no second lower cutoff was
used to assign these eligible students to the local programs. As a
result, while assignment to group may have been sharp relative to

" a cutoff value, assignment to different levels of the program was

not, and the analysis was consequently complicated.

The determination of the type of program that is received
needs to be studied in more detail. In fact, this was a sentiment
that was seconded by many of the respondents, although viewed
in slightly different terms. Many respondents felt that the
emphasis within the Title I evaluation system on outcome
evaluation or on the estimate of gain was misplaced and that
more work should be done on studying the process of Title I
training. This would involve a more careful look at the type and
amount of the program that is administered and is to be
encouraged especially if this information will be coupled or
incorporated into the analysis of gains.

DATA PREPARATION ISSUES

In conducting a data analysis, it is often necessary to exclude
or disqualify certain cases for a variety of reasons. Sometimes the
cases “‘exclude” themselves through attrition from the program,
that is, for one reason or another it is impossible to obtain both a
pretest and a posttest score. In other cases, the data analyst
decides to exclude certain subgroups from the final analysis
because they do not represent the target group of interest or for
some reason their data is suspect. Thus, what is included here
under the title “Data Preparation” includes those groups that are
disqualified for one reason or another, as well as a discussion of
the process of defining the final data that will be used in the
analysis. :

Three types of issues are considered here:

(1)  Background and Prevalence of Exclusions
(2) Common Exclusions
(3) Data Processing Issues
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Very little formal work has been done on the systematic effects of
such exclusions, and in fact the wide variety of decisions that
must be faced by a school district evaluator suggests that the task
at times can become overwhelming. Many respondents, especial-
ly at the local level, reported that problems of this nature pose
tremendous difficulty and that there was little formal guidance
on how they should proceed.

BACKGROUND AND PREVALENCE OF EXCLUSIONS

The office of Education along with the RMC Corporation has
indirectly commented on the issue of data exclusions, most often
within the context of attrition. A recent draft of the Policy
Manual (USOE, 1979) states that:

some units (students, schools, etc.) will no longer be available when
the second measurement (posttest) is made. The loss is referred to
as artrition. If a large percentage of units has been lost, the effects
of this attrition should be checked to see if the data are still
representative.

As a general rule, if the posttest includes fewer than two-thirds of
the students that were pre-tested, the data should be considered
probably not representative. The evaluator can check the
representativeness of the data by determining whether:

—_the mean score of students having both measurements is
significantly differgnt from the mean score of students having
only one measurement.

—certain subgroups in the project (e.g., the lowest or highest
scoring students, the lowest or highest socio-economic status)
tend to have only one score.

In its evaluation plan the LEA may wish to consider whether
attrition has been a problem in the past. If certain types of
students have been lost to previous evaluations, the evaluator may
be able to develop a plan to locate those types of students for
posttesting.
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It is clear that attrition is a primary concern of the Title I
evaluation system.

Attrition technically only pertains to those cases where it was
impe © ' obtain a pretest and posttest score. As will be
shown below, .. -= are many other data cases that are routinely
excluded from the final analysis even though both pretest and
posttest scores are obtained. While a district may have more than
two-thirds of its cases with a pre and posttest, this does not
necessarily mean that two-thirds of the eligible cases will finally
be used in the data analysis. Little guidance is provided to aid the
local evaluator in deciding which data must be used in the final
analysis. Some guidance is implicit in the definition of who is
eligible for Title I service. Thus, the Office of Education Annual
Report for 1979 (USOE, 1979) states that:

Exceptions to serving the most needy students are: continuation of
services to educationally deprived students no longer in greatest
need; continuation of services to educationally deprived children
transferred to an eligible area in the same school year; skipping
children in greatest need who are receiving services of the same
nature and scope from non-federal sources; and a school with 75%
or more if its students from low-income families may have a
project for all of its students (called a school-wide project).

This statement provides some idea of students who may or may
not be eligible for Title I services, but does not indicate whether
or not these cases should be included in the data analysis if
treated. '

We can begin to determine the extent of the problem by
looking at estimates of attrition for the data obtained from the
State of Florida. The annual report for the State of Florida
(Florida Department of Education, 1979) states that the “undu-
plicated participant count” (that is the number of students
estimated statewide for the 1978 school year) was 173,477 while
the total number unaccounted for in reporting Title I analysis
was 40,145. This means that approximately 76.8% of the data
was present and that there was a loss of about one quarter of all
these cases. This was significantly less than in the previous year
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and tended to occur, according to the report, primarily in
kindergarten and first grade.

Some attempt was made to verify this information by individu-
al school districts. The annual evaluation report for each school
district requires a listing of the number of participants in Title I
evaluation programs broken down by subject area. Although this
is listed as a “duplicated count,” it might still serve to allow
estimates of the percentage of missing data and at worst is likely
to yield conservative estimates. The procedure followed here was
to total up the number of participants listed and to compare this
to the number of students listed as included in each analysis.

Thus, a ratio can be formed with the number of students in the

analysis as the numerator and the number of participants as the
denominator. While one must be cautious about interpreting
these results because of the possibility of faulty or missing
information in the annual report, it is nevertheless instructive to
compare these estimates of missing data with those reported by
the state. This tabulation indicated that the median amount of
missing data is 32% with a range from 1% to 91%. While this
range suggests the possibility of inaccuracy in reporting, the
median value of 32% does not differ considerably of the value of
25% as reported by the state. It is obvious from this information
that a good deal of the data falls into the category of attrition.
What is not clear is the degree to which additional exclusions are
made on the data that are not reflected in these figures.
One reason for calculating within-district estimates of missing
data is so that it might be possible to compare the effects of
various amounts of missing data on the estimates of program
gain. Thus, when the estimates of missing data are dichotomized
at the median, that is, all districts having less than 32% missing
data are considered in one group while those having more are
considered in the other, it is possible to see whether there are
differences in gains under these conditions. In fact, the differ-
ences do not appear to be great. Those estimates of gain based on
relatively little missing data yielded an average gain at the cutoff
point of -2.02 while those districts with evidence of higher
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percentages of missing data had an average gain at the cutoff
point of -2.61. While no difference appears to be present when
the data is aggregated for the state, it is not clear how the
exclusion of data might affect a given analysis. One study
(Kaskowitz & Friendly, 1980) shows that while national aggre-
gates of gains are not likely to be seriously biased due to attrition,
individual project estimates can sometimes be distorted by as
much as * 15 NCE units. What is clear is that a significant
percentage of the data does not reach the final analysis.

COMMON EXCLUSIONS

The list of subgroups that might be excluded from any given
data analysis reads like a list of “‘special problems” that tend to
arise in the process of conducting research. The most common
exclusion, as recognized above, is due to what is traditionally
considered attrition, that is, the lack of both a pre- and posttest
score for a given student. Several factors may responsible for this.
First, it may in fact be the case that students do not take both
tests. This could be due to factors such as absenteeism or the
movement of students either into or out of the school district. It
is often the case that these standardized achievement tests take
several days to administer, and as a result, a student missing class
on one particular day may not have both tests depending upon
whether the students were retested or whether test data was
available from the district that they previously attended. Another
source of attrition cases has to do with the inability to match
successfully the pretest and posttest for given students. Thus, the
problems mentioned above concerning the miscoding of such
items as identification numbers, name, and so on, will result in an
inability to successfully match pre- and posttest score.

A second exclusion that tends to occur is the result of
misassignment relative to the cutoff score. One respondent noted.
that it was discovered that schools within the district were not
sending in cases that were misassigned relative to the cutoff
score. When school administrators were asked why these scores
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were not sent, their reasons usually had to do with the desire to
comply with the requirements for strict adherence to a cutoff
score. Sometimes this exclusion is made by the data analyst in
order to insure that the requirement of a sharp cutoff appears to
be met.

Data is often excluded because of the mobility of the students.
Generally, there are two types of mobility of concern here. First,
students may transfer into and/or out of schools within the same

* district. Second, students may transfer into or out of the district

itself. Within a given school district, a distinction is often made
between Title I and non-Title I schools. The Title 1 allocation
procedures require at the district level that schools be ranked
according to some measure that is an indicator of poverty. Most
often, schools within a district are ranked according to a
measure, such as the number of free lunches that are served,
which is a readily available measure and is thought to be a
reasonable proxy for the degree of poverty. Depending upon the
size of allocation to the district, it is often the case that some
schools will receive no Title I funds at all. The schools that
receive funds are usually determined by a cutoff point on the
measure of poverty. Problems occur for the data analysis when a
student who is eligible to receive Title I service begins the school
year in a Title I school and transfers to a non-Title school or vice
versa. It is possible in this situation that eligible students will
receive total service, partial service, or no service. Often, the
documentation is poor and it is difficult to know whether or not
such cases should be included in the final analyses. Along with
this is the difficulty in tracking any kind of transfers within the
same school district. Illustrative of such difficulties is an example
cited by Visco (1980):

A child started out at School A transferred to School B and then
transferred to School C all during the fall. All three schools are
Title 1 and the child qualified for service in each. Thus, she was
dropped at A and added at B, dropped at B, and added at C, (so
far, that is).
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In this case, even though the student might have received service
throughout the year, she was excluded from the analysis. This
may or may not be justified depending upon how one wishes to
interpret the effect of the individual circumstances.

The second type of mobility that occurs involves transfers into
and out of the school system. Depending upon the time of year
the student transferred, it may or may not be possible to obtain
the necessary data. Thus, students transferring into the school
district for the fall semester who did not receive the spring pretest
may be able to be pretested and included in the analysis.
Obviously, in cases such as this, one runs into the administrative
difficulties posed by such additional pretesting, as well as the
problems associated with equating scores from tests given at
different points in time.

Another problem related to mobility concerns the situations
where students simply *“‘drop out of sight” for a time only to
reappear later somewhere within the school district. This occurs
with alarming frequency, especially in school districts in Florida
in orange-growing regions. Especially unnerving is the case of the
prime harvest season being coincidental with the administration
of district-wide tests. Given that it is not unreasonable for many
school districts to have mobility rates as high as 25% or 30%, it
is clear that the problems posed in trying to track such students
can rapidly become formidable. Even if a certain percentage of
this “mobile” population can be identified for both the pretest
and posttest, it is not clear whether their score should be included
in the analysis.

Another exclusion that is commonly made is of the repeaters
or those students who are held back a grade from year to year.
This exclusion offers a particularly clear illustration of the
detrimental effects that exclusions in general can have on the
data analysis. It is certainly reasonable to expect that most of the
students who are required to repeat a grade come from the group
of students who are eligible for Title I services. If there are a fair
number of repeaters and if these cases are routinely excluded
from the data analysis, it is likely that the program group
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regression line and subsequently the estimate of gain will be
distorted as described in Chapter 6. There, it was shown that
exclusions of this sort act to bias estimates of effect in a negative
direction.

Another set of exclusions is made for students who graduate
from or drop out of the Title I program. Some respondents
reported that when the Title I teacher perceives a student to have
““caught up,” the teacher will sometimes remove the student from
the program without recording this information. Excessive
absenteeism may also cause a child to be dropped or not
depending upon whether or not this information was duly noted.
Title 1 students are also sometimes *picked up” by other
programs such as English As A Second Language, Special
Education, local compensatory education, and so on. Again,
depending upon how accurately this information was recorded
and the view of the individual data analyst, such cases may or
may not be excluded.

Cases are also excluded from the final analysis if it appears
that they are “outliers.” These exclusions are often made without
any clear rationale to guide them. Thus, an analyst may, in
viewing graphs of the univariate and bivariate distributions,
decide that certain cases lie well outside the normal range for the
distribution and on this basis exclude these cases. The question in
such cases often revolves around whether the observed score is
legitimate or whether it is the result of some processing error or
miscoding. Sometimes it is possible to investigate such cases in-
depth, but often this is difficult or too costly. More rational
guidelines for excluding outliers have been suggested and analytic
procedures less sensitive to their presence have been recom-
mended (Fleming & White, 1980).

It is legitimate within the Title I system to allow students who
received services in one year to continue to receive services in
subsequent years even if they no longer qualify in terms of their
pretest score. This provision is largely left to the discretion of
individual district administrators. In cases where school districts
decide to take advantage of this option, two problems tend to
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occur. First records of which students got serviced in previous
years tend to be spotty and/or nonexistent and thus it is difficult
to determine which cases fall into this category. Second, even for
cases that do not fall into this category, whether they should be
included in the analysis or not is not clear.

It is obvious from the above discussion that a large number of
exclusions or disqualifications are considered or are incorporated
prior to the statistical analysis. While any one exclusion may
have only a minimal effect on the analysis, the combination of
several can pose formidable difficulties. Further work needs to be
conducted to determine the extent to which such exclusions are

made and the effect they have on the analysis.

DATA PROCESSING ISSUES

Another class of problems related to exclusions or disqualifica-
tions concerns the order in which these are made and the
variables that are used to select the excluded cases.

In the large amounts of data analyzed by computer, it is often
difficult to know which variables should be used to select
subgroups for the analysis. For example, if one wishes to perform

a task as simple as dividing students into those who were in Title

I or non-Title I schools, it is not clear whether it is better to use
information available from the school at the time of the pretest,
the posttest, or a match between the two. Similarly, students are
often selected for the analysis of a particular grade level by
selecting on the posttest gradeé. This seemingly simple rule would
include in the final data setup all students who repeated the
grade. This may or may not be desirable.

Generally, one of two strategies is followed by a school district
in the processing of its data. The first strategy involves creating
successively smaller data sets by excluding certain subgroups
from the analysis. The second strategy involves creation of a
comprehensive data file, including all cases and the application of
a multiple if-statement for purposes of selecting the appropriate

art. 1 avelusions are considered together, the -
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process of selecting the appropriate subgroup is seen to be a
formidable task. Visco (1980) provides an illustration of the
complications that can occur in an example of the multiple if-
statements that might be used to select the data for an analysis of
a fourth grade reading program:

If Title I school on pretest
If Title I school on posttest
If school has reading service
If grade 4

If not repeater

If Title 1 service in reading
If below cutoff in reading
If not challenged in reading
If no makeup in reading

If stationary (no add-drop)

These are the statements that might be used to select the program
group cases assuming that these cases have already been success-
fully matched on the pretest and posttest and assuming that other
exclusions (such as of Title I program repeaters) are not desired.
Other sequences might be designed to achieve the same subgroup
of interest and, in fact, the order in which the selections are made
might significantly affect the cases that are finally included.

SUMMARY OF RESEARCH IMPLEMENTATION ISSUES

The litany of implementation problems listed in this chapter
serves to illustrate the wide variety of these problems and their
potential impact upon the data analysis. One would be naive to
believe that these problems could be considered minor or that
they are not likely to affect the data analysis seriously. On the
basis of the investigation documented above it is possible to list
the major goals of a complete implementation analysis. These
would include: :
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(1)

(2)

3
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An identification of the major problem areas in implementing the
design. Four general areas were identified in this chapter, with each
area containing subcategories of potential problems.

A determination of the prevalence or frequency of each problem for
purposes of prioritizing the expected seriousness of their effects upon
the data analysis. Although this task was addressed to some degree,
one can conceive of carrying it out in a more formal manner. This
could take the form of frequency counts of the number of times the
problem occurs in various settings; or with percentage estimates, as
with the estimates of the amount of missing data; or by charting the
distribution of the problem as when one looks at the percentage of
grade repeaters for different pretest values. Because it is unreasonable
to believe that all problems can be identified and accounted for, the
purposes of this step would be to determine which are the major or
most frequent problems that need to be addressed.

An assessment of the effect that the major implementation problems
have on the estimates of program effect. There are several procedures
that might be used to accomplish this. First, one might simply look at
pretest means for various subgroups of interest. This is especially
appropriate if posttest data is missing and one wishes to determine
whether for those cases there is any likely bias. Thus, if one finds that
the pretest mean for students who do not have a posttest is not in the
vicinity of the overall pretest mean, one might suspect that this
subgroup differs from the overall population of interest. In other
cases, one may be able to look at the bivariate relationship between an
estimate of a particular problem and either the pretest or the posttest.
For example, if one is interested in attrition, it would be useful to plot
the percentage of attrition cases for various pretest scores. One would
expect that if attrition has no serious effect upon the results, this
percentage would be evenly distributed across all pretest values. It is
especially useful in the case of the regression-discontinuity design to
determine whether there is a coincidental jump in this distribution
near the cutoff, as well as whether there are a proportionately greater
number of cases in the program group range than in the control group.
Probably the best way to determine the effects that various implemen-
tation problems have on program effect estimates is to conduct
multiple analyses. For example, one could conduct the analysis with
or without grade repeaters, transfers, and so on. If the results do not
differ significantly, one would feel more confident in including such
data in the final analysis. Similar strategies might be applied to
determine the effect of measurement problems such as floor and
ceiling effects. If, for example, a ceiling effect is thought to exist, one

might do a series of analyses where various amounts of data at the
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upper end of the distribution are systematically excluded. If a ceiling
effect is present, the estimates of gain under such a series of analyses
should change systematically. One must be careful, of course, to avoid
misinterpreting such analyses. In this case, for example, a true
quadratic relationship, if interpreted and analyzed as a ceiling effect,
could lead to erroneous conclusions.

The analysis presented in this chapter illustrates the impor-
tance of implementation issues. Such study tends to degrade the
distinction that is often made between process and outcome
evaluations. While the conduct of an implementation investiga-
tion is similar to the types of activities often involved in process
evaluation, the goal is primarily to improve the quality of
outcome studies. Nevertheless, much of the information that is
gathered would be useful to administrators and researchers for
understanding better how their programs work and improving
procedures for future applications. The reader is referred to
Trochim (1982) and Trochim and Visco (1983) for more
extensive discussions on how techniques adapted from account-
ing, auditing, industrial quality control, and other fields might be
used to study and improve research implementation.

The results of this investigation of the implementation of
regression-discontinuity in compensatory education can be sum-
marized briefly in terms of the major topics considered in this
chapter:

(1)  Assignment. Misassignment occurs routinely in many districts as part
of formalized “challenge” procedures. In typical Title I programs,
misassignment is likely to produce biased estimates of effect regardless
of how these cases are handled in the analysis. Including challenges in
their original group (disregarding their retest score), including them in
the group indicated by their retest score, or excluding them from the
analysis altogether will not in many cases remove the bias.

(2) Measurement. Floor and ceiling effects and chance level problems can
induce curvilinearity in the data and result in biased estimates of gain
when using the Title I Model C analysis. The differences between
chance level problems and floor effects have been underinvestigated
and deserve further study.

(3) Program. The assumption that all program (or comparison) students
experience standardized conditions is unrealistic. This is acknowl-
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edged in the Title I system by use of gross categories for differentiating
program types (e.g., reading versus math, in-class versus pull-out,
etc.). Nevertheless, more accurate descriptions of program and
comparison group experiences (based perhaps on a detailed process
analysis of the program) will improve the quality of the statistical
analysis and the estimates of gain.

(4)  Data Preparation. Significant amounts of data are routinely excluded
prior to analysis. Cases are excluded because they are perceived as
coming from “special” groups (e.g., Title I repeaters or graduates) or
because of attrition (e.g., due to absenteeism, migrancy, transfers, and
so on). Any combination of exclusions can act to distort estimates of
program effect. Multiple analyses may be useful for assessing the
extent of these problems.

Overall, a major problem is poor documentation that makes it
impossible to determine the extent and influence of implementa-
tion problems. Even where documentation exists, there can be
doubts as to its accuracy. Improvements in documentation are
needed so that implementation problems can be ranked accurate-
ly by order of importance and procedures, or analyses can be
devised to deal with them.

It is appropriate that this volume conclude with a strong
statement of concern regarding the implementation of the
regression-discontinuity design. The little experience we have in
applying the design indicates that implementation issues can act
to corrupt a well-conceived research plan. Work must continue
simultaneously on both the theoretical methodological design
considerations and the problems encountered when applying the
design if we are to ever realize the full potential of the regression-
discontinuity design in applied social research.

NOTE

1. The reader is referred to Chapter 2 for an overview of Title I evaluation. This
discussion is based on Trochim (1980). Much of the material comes from interviews and
site visits conducted as part of that project. For confidentiality reasons, most persons
involved in that study are not identified by name but are rather referred to as respondents.
The reader will find a more detailed description of the procedures used to gather this data
in Trochim (1980).

APPENDIX A

COMPUTER ANALYSIS OF
REGRESSION-DISCONTINUITY DATA

This appendix briefly outlines some considerations for using standard
statistical programming packages to analyze regression-discontinuity data.
Two statistical software packages, SPSS (Nie et al., 1975) and MINITAB
(Ryan et al., 1976) are expiicitly discussed. Readers who are familiar with
other statistical packages (e.g., SAS, BMDP, Datatext) should have little
difficulty in adapting the instructions offered here for those contexts. The
analysis of the basic regression-discontinuity design as outlined in Chapter
5 simply requires use of any standard least squares regression analysis
program. It is assumed that the reader is familiar with regression analysis
on computers.

The discussion here will deal only with the basic three-variable regres-
sion-discontinuity case. Minimally, one needs a pretest variable, assign-
ment variable (i.e., a dummy-coded program indicator), and a posttest
variable, labelled x, z, and y respectively. There are three basic steps
involved in the computer analysis:

(1)  Data Input. The three variables x, y, and z must be input to the
program. This can be accomplished by punching the data onto cards,
entering them into an online data file or, with some programs,
entering them interactively. It is assumed that the reader knows how
to accomplish’ this for the program of interest. In the SPSS and
MINITAB presentations below, it will be assumed that the three
variables have already been entered.

(2)  Transformations and Recoding. There are two major transformations
or recodings that must be done in order to carry out the analysis as
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outlined in Chapter 5. First, one must subtract the cutoff value from
each pretest value (if the estimate of gain is desired at some point
other than the cutoff, then that point must be subtracted). Second, one
must construct polynomials of the pretest and interaction terms to the
degree of polynomial that is desired.
(3)  Model Specification. This step involves specifying to the computer
program the appropriate regression model. As outlined in Chapter 5,
one should specify a forward stepwise regression procedure that fits
lower-order terms earlier.

The next two sections describe how one can accomplish steps two and
three in MV ! SPSS.

MINITAB ANALYSIS OF REGRESSION-DISCONTINUITY DATA

The MINITAB language is an interactive statistical package that is ideal
for teaching and demonstrations of statistical techniques, and for explorato-
ry analysis of data. it does not offer sufficient precision in calculations to be
appropriate for a high accuracy analysis of regression-discontinuity data.

It is assumed that the analyst has read the three variables, x, y, and z,
into columns C1, C2, and C3, respectively. The reader should note that if
assignment to group has been sharp relative to the cutoff, one need only
reading in the pretest and posttest. The dummy-coded assignment variable
can be constructed by recoding the pretest (as shown in the simulations in
Appendix B). Once the data have been read in, one needs to conduct the
appropriate recodings. First, the cutoff needs to be subtracted from the
pretest:

let c4 = c1 - (cutoff value)

Where the analyst substitutes the cutoff score in the above command.
Next, the polynomials and interaction terms are constructed. To begin,
construct the treatment x pretest interaction:

let ¢c5 = ¢3 * c4
One can then construct the quadratic term and its interaction:

let c6 = c4 * c4

let c7 = ¢c3 * ¢c6
Simitarly, one then constructs the cubic terms and interaction:

let c8 = c6 * c4
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let ¢ = c3 * c8

Notice that for each higher-order term, all one does is to multiply the next
lowest polynomial term by the adjusted pretest (i.e., pretest minus the
cutoff) variable. To obtain the interaction term for that order of polynomial,
one simple multiplies the dummy assignment variable by the polynomial
term. One can continue constructing polynomials and their interactions to
any degree desired as described in Chapter 5.

Because the current version of MINITAB has no facility for conducting
stepwise regression analysis, the analyst must conduct separate regression
analyses for each step in the model. The procedure suggested here
involves adding in all terms of the same order, beginning with first-order
terms, one step at a time. Thus, the first analysis that would be run would
be:

regr c2 3 ¢c3 c4 ¢5

which simply calls for the regression of the posttest (C2) on three variables:
the group assignment variable (C3); the adjusted pretest (C4); and, the
assignment x pretest interaction term (C5). The next step (analysis) would
add in the quadratic term and its interaction:

regr c2 5 ¢3 c4 c5 c6 c7

which simply adds the squared adjusted pretest (C6) and its interaction with
assignment (C7). One then adds in the cubic terms:

regr c2 7 c3 c4 ¢5 ¢6 ¢7 ¢8 c9

The analysis proceeds in steps until all terms desired have been included.
The reader should examine the simulations in Appendix B for further details
on the use of MINITAB with regression-discontinuity data.

SPSS ANALYSIS OF REGRESSION-DISCONTINUITY DATA

SPSS is a high-quality statistical package appropriate for professional
analysis of research data. As above, it is assumed that the analyst has
already read the data into an SPSS program. Here, the variables will be
named X (for the pretest), Y (the posttest), and Z (the dummy group
assignment variable). The first step in the analysis is to subtract the cutoft
value from the pretest, which can be accomplished with:

COMPUTE X1 = X - (cutoff vaiue)

where the analyst substitutes the value of the cutoff in the above statement.
Next, the assignment x adjusted pretest interaction is constructed:
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COMPUTE n=2zZ"*"Xx1
The quadratic term and its interaction are computed with:

COMPUTE X2 =X1*X1

COMPUTE 12 =2 * X2
and the cubic term and its interaction by:

COMPUTE X3 = X2 * X1

COMPUTE 13=2"*X3

One can continue generating higher-order polynomials and their interaction
terms to any degree desired as outlined in Chapter 5.

SPSS allows for stepwise multiple regression and therefore, the com-
plete analysis can be run using one regression specification statement. For
a first through third-order polynomial analysis, one could use:

REGRESSION VARIABLES = Y,Z,X1,11,X2,12,X3,13/
REGRESSION = Y WITH 2Z(6),X1(6),11(6),

X2(4),12(4),X3(2),13(2)/

The VARIABLES = portion of the regression statement simply tells the
program what set of variables will be considered for inclusion in the
analysis. The REGRESSION = statement specifies the regression of the
posttest (Y) on the assignment variable (Z), adjusted pretest (X1), and
higher-order terms and their interactions (X2 through 13). The numbers in
parentheses after each variable specify the order of inclusion, that is, the
step at which the variable will be entered. The value of the number is
arbitrary (i.e., one could use values of 24, 12, and 2 instead of 6, 4, and 2,
respectively), but all variables having the same inclusion value are entered
on the same step and the higher the inclusion value, the earlier the step of
entry. Thus, the specification above indicates a three-step analysis with the
variables having an inclusion value of 6 (i.e., Z, X1, 1) being entered on the
first step, those with an inclusion value of 4 (i.e., X2 and 12)being added on
step two, and those with an inclusion value of 2 (i.e., X3 and 13) being added
on the third and final step. The reader is encouraged to consult Nie et al.
(1975) for a detailed description of the regression ststement specification.

g
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CONCLUSION

Obviously, this appendix only outlines the simplest analysis. Variations of
the regression-discontinuity design that were presented throughout the text
are, for the most part, straightforward extensions of these procedures. In
addition, any analysis of regression-discontinuity data should include
descriptive statistics and graphic analysis. Some simple procedures for
plotting the data using MINITAB are presented in Appendix B. Both SPSS
and SAS have excellent high-quality plotting procedures that would enable
the analyst to examine the data, especially when trying to assess visually
the degree of-polynomial that will be fitted in the analysis.
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APPENDIX B

REGRESSION-DISCONTINUITY
SIMULATION EXERCISES

This appendix consists of two computer simulation exercises in the
MINITAB language that illustrate some of the major statistical issues in
regression-discontinuity analysis. In addition to their use as classroom
exercises when teaching the regression-discontinuity design, these simula-
tions are similar in structure to many of the simulations reported in this
volume.

The write-up assumes that the reader has access to a computer that
implements MINITAB and knows how to get into the MINITAB language. In
most institutions, users can consult their local computer operation office to
determine whether MINITAB is available and how it can be accessed. The
exercises have been written in a conversational tone and require no prior
knowledge of MINITAB to be interpretable (athough such would be helpful,
of course). The author has used these exercises in undergraduate level
research methods courses with reasonable success.

THE REGRESSION-DISCONTINUITY DESIGN
PART 1

In this exercise, we are going to create and analyze data for a
regression-discontinuity design. Recall that in its simplest form the design
has a pretest, a posttest, and two groups, usually a program and
comparison group. The distinguishing feature of the design is its procedure
for assignment to groups—persons or units are assigned to one or the
other group solely on the basis of a cutoff score on the preprogram
measure. Thus, all persons having a preprogram score on one side of the

nee
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cutoff value are put into one group and all remaining persons are put in the
other. We can depict the design using the following notation:

coxo
co O

where the C indicates that groups are assigned by a cutoff score, the first O
represents the pretest, the X depicts the administration of some program or
treatment, and the second O signifies the posttest. Notice that the top line
represents the program group while the second line indicates the compari-
son group.

In this simulation we will create data for a ‘"'compensatory’’ program
case. We will assume that both the pretest and posttest are fallible
measures of ability (where higher scores indicate generally higher ability).
We will also assume that we want the program being studied to be given to
the low pretest scorers—those who are low in pretest ability. To begin, log
on as usual and then get into MINITAB:

minitab

It is convenient to turn off extended printing and statistical outpui with:
noprint
briet

The first step is to create two hypothetical tests: the pretest and posttest.
Before we can do this, we need to create a measure of true ability and
separate error measures for each test:

nran 500 50 § c1

nran 500 0 5 ¢c2

nran 500 0 5 c3
Now we can construct the pretest by adding true ability (C1) to pretest error
(C2):

let ¢4 = c1+c2
Before constructing the posttest it is useful to create the variable that
describes the two groups. The pretest mean will be about 50 and, arbitrarily,
we will use 50 as the cutoff score. Because this is a compensatory case, we
want all those who score lower than or equal to 50 to be program cases,
with all those scoring above 50 to be in the comparison group. The

following two recode statements will create a new dummy variable (C5) with
a value of 1 for program cases and O for comparison cases:

reco 0 50 c4 1 ¢c5
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-reco 50 100 ¢5 0 ¢5
To check on how many persons you have in each condition do:

table c5

Notice that you probably don't have exactly 250 people in each group
(although in the long run, that is how many you would expect if you divide a
normal distribution at the mean). Now you are ready to construct the
posttest. We would like to simulate an effective program so we will add in
10 points for all program cases (recall that we accomplish this by
multiplying 10 by the dummy-coded variable—for all program cases this
product is 10, for comparison cases, 0—this is then added into the
posttest):

let c6=cl+c3+(10°c5)
It is convenient to name the variables:

name cl='true’ c2="xerror' ¢3="yerror’

name c4='pretest’ c5="group’ c6='posttest’
To get some idea of what the data look like try:

table c¢5;
means c4 6.

And don't forget to put the period at the end of the second line. This
command gives pre and post means for the two groups. Note that the
program group. starts off at a distinct disadvantage—we deliberately
selected the lower scorers on the preprogram measure. Notice also that
the comparison group actually regresses back toward the overall mean of
50 between the pretest and posttest. This is to be expected because we
selected both groups from the extremes of the pretest distribution. Finally,
notice that the program group scores as well or better than the comparison
group on the posttest. This is because of the sizeable 10 point program
effect that we put in. You might also want to examine pre and post
histograms, correlations, and the like. Now, let's look at the bivariate
distribution:

plot c6 c4

You may want to reset the HEIGHT to get the plot to fit on your terminal
screen. You shouid be able to see that the bivariate distribution looks like it
"jumps" at the pretest value of 50 points. This is the discontinuity that we
expect in a regression-discontinuity design when the program has an effect
(note that if the program has no effect, we expect a bivariate distribution
that is continuous or does not jump).

A A
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At this point we have finished creating the data. The distribution that you
see might be what you would get if you conducted a real study (although
real data seldom behaves as well as this). The first step in analyzing this
data is to examine the data to try to determine what the "likely'' pre-post
function is. We know that the true function here is linear (that the same
straight-line fit in both groups is appropriate), but with real data it will often
be difficult to tell by visual inspection alone whether straight or curved lines
are needed. Therefore, while we might think that the mbst likely function for
this distribution is linear, we will deliberately over-fit or over specify this
likely function a bit to be on the safe side. The first thing we need to do to
set up the analysis is to set up a new variable that will assure that the
program effect will be estimated at the cutoff point. To do this, we simply
create a new variable that is equal to the pretest minus the cutoff score.
You should see that this new variable will now be equal to zero at the cutoff
score and that all program cases will have negative preprogram scores
while the comparison group will have positive ones. Since the regression
program would automatically estimate the vertical difference or 'jump"
between the two groups at the intercept (i.e., where the pretest equals 0),
when we create this new variable, we are setting the cutoff equal to a
pretest value of 0 and the regression program will correctly estimate the
jump at the cutoff. We will put this new variable in C7:

let ¢7 = ¢4-50

name ¢7 = 'pre-cut’

and name it appropriately. You will see that we always substitute this
variable for the pretest in the analyses.

Now we need to set up some additional variables that will enable us to
overspecify the "likely" true linear function:

let ¢8 = ¢7°c5

This new variable is simply the product of the corrected pretest and the
dummy assignment variable. Thus, C8 will be equal to zero for each
comparison group case and equal to the corrected pretest for each
program case. When this variable is added into the analysis we are in effect
telling the regression program to see if there is any interaction between the
pretest (C7) and the program (C5). This is equivalent to asking whether the
linear slopes in the two groups are equal or whether they are ditferent
(which implies that the effect of the program differs depending on what
pretest score a person had). Now, let's construct quadratic terms:

let c9 = ¢7°c7

let ¢10 = ¢9*c5
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For C9, we simply square the pretest. When this variable is entered into the
analysis, we are in effect asking whether the bivariate distribution looks
curved in a quadratic pattern (consult an introductory algebra book if you
don't recall what a quadratic or squared function looks like). The second
variable, C10, allows the quadratic elements in each group to differ, and
therefore, can be considered a quadratic interaction term. We should name
the variables:

name c8 ='i1' c9 ='pre2' c10 ='i2'

Where 11 stands for "linear Interaction." PRE2 for the "'squared pretest,”
and 12 for the "quadratic interaction.” We could continue (and normally
would) generating even higher-order terms and their interactions (cubic,
quartic, quintic, etc.), but these will suffice for this demonstration.

We are now ready to begin the analysis. We will do this in a series of
REGRession steps, each time adding in higher-order terms. In the first step,
we fit a model that assumes that the bivariate distribution is best described
by straight lines with the same slopes in each group and a jump at the
cutoff:

regr c6 2 ¢7 ¢5

The coefficient associated with the GROUP variable in the table is the
estimate of the program effect. Since we created the data ourselves, we
know that this regression analysis exactly specifies the true bivariate
function—we created the data to have the same slope in each group and
to have a program effect of 10 points. Is the estimate that you obtain near
the true effect of ten? You can construct a 95% confidence interval (using
plus or minus 2 times the standard deviation of the coefficient for the
GROUP variable). Does the true effect of ten points fall within this interval
(it should in most cases)? '

With real data we would not be sure that the model we fit in this first step
includes all the necessary terms. If we have left out a necessary term (for
instance, if there was in fact a linear interaction), then it would be likely that
the estimate we obtained would be biased (you will see this in the next
simulation). To be on the safe side, we will add in a few more terms to the
analysis in successive REGRession steps. If we have already included all
necessary terms (as in the analysis above) then these additional terms will
be superfluous. They should not bias the estimate of program effect, but we
will have less precision. For the next step in the analysis, we will allow the
slopes in the two groups to differ by adding in I1, the linear interaction term:

regr ¢6 3 c7 ¢5 c8

The coefficient for the GROUP variable is, as usual, the estimate of
program effect. We know that the new variable, C8, is unnecessary
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because we set up the simulation so that the slopes in both groups are the
same. You should see that the coefficient for this |1 variable is near zero
and that a zero value almost surely falls within the 95% confidence interval
of this coefficient. Because this term is unnecessary, we should still have
an unbiased estimate of the program effect. Is the coefficient for GROUP
near the true value of 10 points? Does the value of 1q fall within the 95%
confidence interval of the coefficient? You should also note that the
estimate of the program effect is less precise in this analysis than in the
previous one—the ST. DEV. OF COEF. for the GROUP variable should be
larger in this case than in the previous run. Now, we will add in the quadratic
term:

regr ¢6 4 ¢7 c5 ¢c8 9

Again, you should see that the coefficients for the superfluous terms (11 and
PRE2) are near zero. Similarly, the estimate of program effect should still
be unbiased and near a value of ten. This time, the standard error of the
GROUP coefficient will be a little larger than last time, again indicating that
there is some loss of precision as higher-order terms are added in. Finally,
we will allow the quadratic terms to differ between groups by adding in the
quadratic interaction term, i2:

regr ¢6 5 ¢7 ¢5 ¢8 ¢9 ¢10

By now you should be able to see the pattern across analyses. Unneces-
sary terms will have coefficients near zero. The program effect estimate
should still be near ten, but the 95% confidence interval will be slightly
wider, indicating that there is a loss of precision as we add in more terms.

In an analysis of real data, you would by now be more convinced that
your initial guess that the bivariate distribution was linear was a sensible
one. You might decide to continue fitting higher-order terms or you might
stop with the quadratic terms. This whole procedure may strike you as
somewhat wasteful. If we think the correct function is linear, why not just fit
that? The procedure outlined here is a conservative one. It is designed to
minimize the chances of obtaining a biased estimate of program effect by
increasing your chances of overspecifying the true function. In the next
exercise, you will see what can happen if you underspecify the true
function. Variations for this exercise are included at the end of the next one.
When you are finished, be sure to get out of MINITAB:

stop
and then logoff as usual.
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THE REGRESSION-DISCONTINUITY DESIGN
PART II

This exercise will illustrate what happens when we don't fit the correctly
shaped regression line to the data in a regression-discontinuity design. It is
assumed that you have already completed the previous exercise that
outlined the general analytic strategy for regression-discontinuity. To begin,
logon as usual and then get into MINITAB:

minitab

We will begin with commands that are similar to the ones used in the
previous exercise. Recall that we are simulating data for a ''compensatory"
case:

noprint

brief

nran 500 50 5 c1

nran 500 0 5 ¢2

nran 500 0 5 ¢c3

let c4 = c1+c2

reco 0 45 c4 1 ¢c5

reco 45 100 ¢5 0 ¢5

name cl1= 'true’ c2 ='xerror' c3 ='yerror'
name c4= ‘pretest' c5 ='group

So far, this is pretty much what was done in the previous exercise. Variable
C4 is the pretest and C5 is the dummy assignment variable (where 1 =
program participant; 0 = comparison participant). It is important for you to
note that this time we have used a pretest score of 45 units as the cutoff.
This will be discussed more at the end of this exercise. In the next step, we
will create the pretest minus the cutoff (C7) and the linear interaction terrh
(C8) before creating the posttest (because we will need them to create the
posttest):

let ¢7=c4-45
let c8=c7*c5
name c7= 'pre-cut' c8='it'

Recall that we name variable C8 with ""11" to signify the linear (i.e., first
order) interaction.

In this simulation, we will construct a posttest that has both a main effect
(a jump at the cutoff point) and an interaction effect (a difference in linear
slopes between groups):
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let c6 = c1+c3+(10°c5)+(10*c8)
And, of course, we should name the posttest:

name c6 ='posttest’

Notice that just as in the previous exercise we have put in a 10-point jump
as the main effect for group (C5). This time, however, we also put in a 10-
point interaction effect. Although we might not expect this big an interaction
effect in a real study, we deliberately chose a large effect so you can clearly
see what happens when we misspecify the pre-post function in regression-
discontinuity analysis. You should see in the bivariate distribution that we
have a much more steeply sloped line. In fact, the slope should be 10 times
greater for the program group than for the comparison group:

plot ¢6 c4

The 10-point jump at the cutoff point may not be visually apparent in this
graph because of the steep slope in the program group. Sometimes it is
useful to plot only a portion of the distribution so that we can see it more
clearly. For instance, we can plot all scores between 30 and 60 on the
pretest and between 0 and 80 on the posttest with the following:

plot ¢6 0 80 c4 30 60

At this point, we have created the pretest, posttest, assignment variable
and the corrected pretest. You might want to examine some of these more
carefully. For example, you might try:

table ¢5
hist c4
hist ¢6

Notice that because we used a cutoff score (45) which is below the pretest
mean (50}, we have considerably fewer persons in the program group. You
might also list the means and standard deviations for the pretest and
posttest with the table subcommand procedure:
table c5;
means ¢4 c6;
stdev c4 c6.

and of course, don't forget the semicolons and the period at the end.
Now, as in the previous exercise, we need to construct the variables that
we will need for the analysis:

let ¢9 = c7'c7
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let c10 = c9%c5

name c¢9 ='pre2' c10 = 'i2'
We are now ready to proceed to the analysis itself:

regr ¢6 2 ¢7 ¢5

As always, the estimate of the program effect is the coefficient for the
GROUP variable in the regression table. Is it near the true value of 10 points
that we put in? Here you-should clearly see that the estimate is biased.
What is wrong? When we created the data, we put in both a main effect (a
jump) and an interaction (a difference between slopes). The model that you
put into the above analysis fits straight lines that have the same slope in
both groups. This is obviously wrong and leads to a biased estimate of the
jump. You have underspecified the true model because you have not
included all the necessary terms (in this case, you haven't included the
linear interaction term, C8). The next step would be to add this term in:

regr ¢6 3 ¢7 ¢5 ¢c8

Now you should observe that the estimate for the program effect (the
coefficient for GROUP) is near the true value of 10 points. At this point, you
have exactly specified the true model (that is, you have included all the
necessary terms that went into making up the posttest). You should also
find that the estimate for the linear interaction term, 11, is near the true value
of 10 units. At this step in the analysis you have exactly specified the true
model—you have included all of the terms that you used when you created
C6, the posttest (remember that you have included C1, the true score,
when you put the pretest into the regression). With real data, however, you
would probably not know at.this point whether you have included all
necessary terms yet. So, to be on the safe side, you would estimate the

next step:

regr c6 4 c7 ¢5 ¢8 ¢9

When you add in the quadratic term, C9, you should find that the estimates
of the program effect and finear interaction remain near 10, but that the
standard errors for these coefticients (and hence, the width of the 95%
confidence interval) are larger—precision is lost as you add in more terms.
But here, because the quadratic term is not a necessary ingredient in the
posttest, there is no bias as a result of this overspecification error. Finally,
we will add in one more term:

regr ¢c6 5 ¢7 ¢5 ¢8 ¢c9 ¢10

Again, the addition of the quadratic interaction term, C10, will not bias the
estimate of program effect although precision will be lost.
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By now you should understand that the central purpose of a regression-
discontinuity analysis is to obtain an unbiased estimate of the program
effect. if we know what the true bivariate function is in advance, there is no
difficulty in doing this. We simply specify a regression model that exactly fits
this true function. However, in real data analysis we will seldom, if ever,
know what the true function is. We do know that if we undérspecify the true
function in the analysis, we are likely to get a biased estimate (you should
have seen this in the first regression analysis above). We also know that if
we overspecify the true function, we will getan unbiased estimate, although
it will be less precise than with exact specification. Therefore, we want an
analysis where specification errors will tend to be in the direction of
overspecification (although exact specification is, of course, always best).
About the best we can recommend is that you start by estimating what you
think is the most likely true function. Then, to be safe, add several terms to
this model. If it looks like these terms may be needed (this is a nontrivial
decision process that is outside the scope of this presentation) then you will
be safer in terms of bias if you opt for the more specified model.

There are a number of variations of this basic exercise that would increase -

your understanding of this design:

— Rerun the simulation using a cutotf point of 50 units on the pretest
(i.e., equal to the mean). In this case it may not appear that
underspecifying the true function leads to bias—you may get an
estimate for the main effect that is very close to 10 points. Why does
this happen? The key to the answer lies in the fact that when you split
a normal distribution in the middle, you create a type of ""symmetry"
in the regression lines across groups. You might be able to see what

- happens if you draw a graph of the bivariate distribution and then
visually fit regression lines with the same slope in both groups. If you
are not particularly adept at doing this visually, you might try plotting
the residuals and the regression lines for the first two steps in the
analysis using the following commands:

regr ¢6 2 ¢7 c5 c20 c21 c22
plot ¢c20 c4

plot c21 c4

regr c6 3 c7 c5 ¢8 c20 c21 c22
plot c20 c4

plot c21 c4

The first plot under each REGR statement is the residuals against the
pretest. If the line you have fit is a good one, we expect that this bivariate
plot will be circular in shape. Notice that it is not for the first regression and
is for the second. The second plot is a rough sketch of the regression line
that you have fit. You may be able to use these graphs to help you figure
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out why this "'special case" of the regression-discontinuity design does not
appear biased even with underspecification.

— Rerun the simulation for the ""meritorious’’ (that is, noncompensatory
case). To do this, just change the recode statements used to create
C5 so that the higher pretest cases are in the program group (and
remember to make the cutoff higher than 50, for instance, 55).

— Put in a negative rather than a positive effect.

— Alter the reliability of the measures by changing the proportion of true
score to error variance in the original NRAN statements.

— Those of you who are really ambitious might like to try playing around
with higher-order true functions (quadratic, cubic) or even some
nonpolynomial ones (e.g., logarithmic). In these you must be very
careful. For example, observe what happens when your true function
is only a quadratic term (i.e., C9} and your cutoff is at the pretest
mean. Can you graph the situation out and convince yourself that
even underspecification in this special case will not generally lead to
bias? You should see that this is similar to the first variation above.

When you are finished, don't forget to get out of MINITAB:
stop
and then logoff as usual.
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