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The purpose of this paper is to explore a po-
tential analytic solution, termed here the ''relz-
tive assignment variable' approach, to the pro-
blem of selection bias in pretest-posttest group
designs. The presentation includes a description
of the wost common pretest-posttest group designs
and an explanation of why some of these are sus-
ceptible to selection bias problems. In addition
there is a discussion of the relative assignment
variable approach, and the illustration of this
approach through simulations and the analysis of
real data. .

Pretest-Posttest Group Designs and Selection
Bias. Pretest-posttest group designs have in
common the existence of an observed pretest, X4,
and posttest, yi, and can be distinguished by the
manner in which persens are assigned to condition
(e.g., program and comparison groups, program 1
and program 2, ete.) where the assignment is
usually represented by the variable z3 (i.e., 24
1 if the research participant is in the program,
0 otherwise).

Four such designs are defined here in terms of
their assignment strategies. The first of these
is the true randomized experiment which is charac-
terized by random assignment to condition. As a
result, the groups which are created can, on the
average, be assumed equivalent on the pretest
(i.e., the expected value, E(x4), is equal for
both groups). Although the true experiment does
not require 2 pretest, the version of the design
which is of interest in this paper includes one
as a covaeriate to increase the statistical pre-
cision of the program effect estimate. The second
of these, the regression-discontinuity design, is
characterized by assignment on the basis of a cut-
off score on the pretest. That is, all persomns
scoring on one side of a selected cutoff value are
assigned to one condition with the remaining par-
ticipants assigned to the other. The third of
these, the "fuzzy" regression-discontinuity designm,
occurs when there is misassignment relative to this

- cutoff value. Here, some persons who should have
been assigned by the cutoff to ome condition are
incorrectlv included in the other. Finally, the
non-equivalent group design allows for non-equi-
valence between the groups on the pretest and can
occur when the random assignment in a true experi-
ment is not maintained or when individuals or
intact g®oups (e.g., classrooms, agencies, govern-
mental units, etrc.) are assigned to condition in
2 nonrandom manner. In fact, the disrtinction be-
tween the fuzzy regression-discontinuity and non-
equivalent group designs is somewhat arbitrrary
(Reichardt, 1979). As will be shown later, data
representative of both designs can be generated
for simulation purposes bv means of the same
general models.

Pretest-posttest group designs are commonly
chosen techniques for the evaluation of socia
programs. For information on the use of these
methods one can consult Boruch et al (1378) who
describe a2 number of randomized experiments, Cook
anc Campbell (1979) and Reichardt (1979) who speak
of the utilitv of non-equivalent group designs,
and Campbell (1969) and Trochim (1980) who discuss

applications of the regression-discontinuity anc
fuzzy regression-discontinuity designs.

Despite an apparent conceptual similaricy pe-
ween pretest-posttest group designs in terms of
observed xj, v; and z;, no general small sample
analytic strategy is known to the authors. While
the regression of y; on x; and z; (and perhaps
polynomials in x; and interactions of xy and zj)
will yield unbiased estimates for some of these
designs, it cannot be used for all of them, at
least in part because of the selection bias pro-
blem. The problem of selection bias has been
viewed as specification error or omitted-veriable
bias by Barnow, Cain and Goldberger (1978) who
state:

"Selectivity bias addresses the guestion of

whether there is some characteristic of the

reatwment (or comtrol) group that is both
associated with receipt of the treatment

and associated with the outcome so as to

lead to & false attribution of causality

regarding treatment and outcome. So stated,

selectivity bias is a version of omittecd-
variable bias, which is commonly analyzed

under the rubric of specification error in

econometric models." (p. &)

Selection bias may affect program estimates when
a variable related to z; and y; is not included
in the analytic wodel. The development of a
general analytic scheme which can compliment the
conceptual similarity of pretest-posttest group
designs is seen here then as dependent, at least
in part, on an analytic solution to the selection
bias problem.

The four designs outlined above can be examined
for their potential for selection bias. 1If cor-
rectly implemented, the true randomized experiment
is free of selection bias because assignment is
random and independent of all pre-program measures.
Within the context discussed in this paper, Gold-
berger (1972) has shown that the regression-dis-
continuity design is free of selection bias as
long as assignment is adhered to and the under-
lying model is linear. This is because assignment
is entirely based on a2 cutoff value on the pretest
and any other measures related to assignment must.
by definition, be related to the pretest (and will
be accounted for in the regression of y; on xj
and 23 bv the presence of the pretest). In the
fuzzy regression-discontinuity design assignment
is not based entirelv on the pretest aicne. In
fact, "fuzziness" can be defined as misassignment
relative to what the pretest cutofi value would
have dictated. As & result, the pretest does not
perfectly account for assignment (as in regressicn-
discontinuity) and the potential for selection
bias exists. This is also the case for the non-
equivalent group design. Here, assignment is not
based on the pretest but rather on z judgment or
determination of the pre-prograr "equivalence" of
the groups. The extent to which the facters which
determine the &ssignment tc group affect z: and
vi and are unaccounted for in the analvtic model
determines the pctential for bias.

The need fcr an anazlvtic sclution te the selec-
tion bias problem in the fuzzv regression-



disctoninuity and non-equivalent group designs is
especially apparent when one considers the fre-
quency with which these two designs occur in prac-
tice. While both can occur in their own righr,
they also represent the degraded versions of the
rue regression-discontinuity and randomized ex-
periment (i.e., versions where the assignment
strategies for either are incorrectly implemented).
Connors (1977) for example, points out the diffi-
culties of adhering to random assignment in prac-
tice while Trochim (1980) describes the almost
universal occurrence of misassignment relative to
the cutoff value in implementations of the
regression-discontinuity design within the context
of compensatory education evaluation.

To summarize, in the true experiment and re-
gression-discontinuity designs the assignment pro-
cedure is known and is perfectly accounted for by
the inclusion of the pretest, x; and the assign-
ment variable, z4 in the analytic model. With the
fuzzy regression-discontinuity and nonequivalent
group designs assignment is not perfectly accoun-
ted for by regressing y; on x; and 24 and an ana-
lvtic model based on these is likely to exhibit
selection bias. The development of an analytic
solution to the selection bias problem is seen
here a2s a step towards unifying analytically this
set of conmceptually similar designs.

The Relative Assignment Variable Approach.
Suppose as in Spiegelman (1976, 1977 and 1979)
that xl, vy and qy are unobserved variables where
Xj denotes true ability, v; denotes pretest ran-
dom measurement error and gi denotes posttest
random measurement error. The data analyst and
program evaluator observe Xy, yi, and zy which are
related to the unobservables (for simplicity of
exposition) by the equations

x; = xz + vy
and y; = bozi + bl + bzX; + q4
where z. = 1 if the research participant has
receiveé the program and O otherwise. In general
terms, the approach to selection bias recommended
here relies on an estimate of E(ziIxi), which is
termed the relative assignment variable, %i’ in
place of z; in the analytic model. Spiegelman
(1976, 1977 and 1979) has shown that an appro-
prlate estimate of by based on an estimate of
E(zlxxl) is asymptotically unbiased under rather
general conditions. Specifically, it is argued
here that the regression of yj om x4 and Zy
(instead of zi) will yield unbiased estimates for
common selection bias situations. The estimate,
z; is not assumed to be related in any way to x4
or xi except that it mway not be perfectly colinear
with x5 (i.e., z; ¥ a; + apx,).

It is useful to picture wﬁat zl is estimating.
First, consider assignment in the true experiment.
Here, E(z;jx;) = .5 for any given x4, which is to
say that for any given pretest value one expects
on average about half the cases will be assigned
to the program and half to the comparison group.
In this case, the relative assigmment variable
can be described in relation to Xy bv a horizontal
straight line at ii = .5 as shown in Figure 1. In
these graphs, £, is on the vertical axis and can
take values frof O to 1 (i.e., none or all in the

rogram group). 'The pretest values, X, are shown
on the horizontal axis. Second, consider the re-
ression~discontinuity design when assigmment is

'snarp relative to a.pretest cutoff value. Here,
it might be that f(z,‘ x3) =1 if X5 is less than

or equal to the selected cutoff and 0 if it is
greater. This step-function is shown in Figure 2.
Finally, for fuzzy regression-discontinuity or the
ﬂon-enu1valent group design the relative assignment
can be described by a function which ranges between
the horizontal line of the true experiment and the
step-function of the sharp regression-discontinuity
design. Several functions of ths type are sketched
in Figure 3. It is clear that z can be viewed as
the estimated probability of acsl~nment or as an
estimate of the proportion of cases assigned to the
program for any given pretest value.

Two methods for estimating relative assignment
are offered here. The simplest and most straight-
forward can be termed the "assignment percentage"
method. It can be calculated in two wavs. With
the first procedure, cases are ordered by their
pretest values and divided into equal size pretest
intervals. In the second procedure, cases are
similarly ordered by the pretest but are divided
into intervals having an equal number of cases.

For both procedures, the percent of cases assigned
to the program is calculated within each defined
interval and then divided by 100 to yield values
which range from O to 1. These values are then
assigned to the individual cases within the inter-
vals., Spiegelman (1976) has shown that for
extremely large n estimates from both procedures
will on average be equal.

The second method for estimating the relative
assignment variable comes from the work of
Spiegelman (1976, 1977 and 1979) and can be termed

the nearest neighbor moving average method. Three
steps are involved:
(1) The set of observations (x4, ¥4 and z4)

are put in ascending order according to
the pretest, xj
"(2) values of A and B are computed as the
greatest integer part of:
7/10/2
B = né/S /2
(3) The relatlve assigmment variable, zi (i.e.,
lxi)), vs (i.e., E(\lfx }) and
yl i.e., E(¥;%|x4)) are’estimated:

A=n

" i+A
zi-Zzi/ZA
i-A
=7, if i<a
=7, if 1> -4
%
y; = r y;/2B
i-B
= §B if 1 < B
2% .; s B
=
Ypp 7 F
3 2 - i+B )
‘i T vy /2B
% B
tZ'BZlLi<B
=\§Blfi>3
~2 '\2
Then ¢ {(x) = E(y fxg) - (Elygx))
' =?~:- i‘)

Essentially, the procedure involves computing the
moving average of the z;'s for cases ordered by Xy
The window for the moving average is of width 24A.
Conditions are specified such that the a-1 values



v
of 'z, at either end of the series are assigned the

vazlues of the first and last estimates having 24
observations. The estimate év in the procedure is
a weighting factor for the regressions. 1In this
paper the assignment percentage and moving average
procedures will be shown with and without this
weighting.

4 third procedure which might be useful for
estimating relative assignment is suggested in the
work of Maddalz and Lee (1976) and Barmow, Cain
and Goldberger (1978). Essentially it uses the
maximum likelihood probit analysis of zj on x4 to
estimate relative assignment. There are three
reasons for not including the probit analysis
approach here. First, it is based on the assump-
tion that the procedure on which assignment was
based is known. This will often not be the case.
Second, probit amalysis is only appropriate here
if the relative assignment variable follows the’
cumulative normal distributioen. Finally, the
probit approach tends to be more complex computa-
tionally than the other procedures.

N To summarize, the relative assignment variable,
Z;, is an estimate of E(zj|xy), that is, an esti-
mate of the probability of assignment to the pro-
gram for any given xj value. Two methods are sug-
gested for estimating Z., the assignment percen-
tage and moving average approaches.

Illustrative Simulations. The relative assign-
ment variable approach is illustrated here omn
simulated data. This requires constructing a pre-
test, Xj, a posttest, yi, and an assignment vari-
able, zy. For the true or "sharp" regression-
discontinuity design in the case of compensatory
education (where the most '"needy" student receives
the program) the assignment might be represented
as

2.

3 = 1 iff x, < %

= (O otherwvise

where x4 is the pretest value for a given student
and xy is the pretest cutoff value for assignment
to the program. To generate data for the fuzzy
regression-discontinuity or non-equivalent group
designs one must assign using a variable which is
not perfectly related to the pretest. The differ-
ences between these two designs is one of degree
not of kind. To generate fuzzy regression-discon-
tinuity data one can begin with true regression-
discontinuity data and introduce slight misassign-
ment in terms of the cutoff value, x4. To generate
non-equivalent group design data one allows
greater amounts of misassignment thus leading to
groups which are more nearly equivalent on the
pretest. For comvenience, the discussion pre-
sented mere is phrased in terms of fuzzy
regression-discontinuity rather than the non-
ecuivalent group design.

Five models of misassigmment are used to
generate data for the simulations and are indi-
cated by the symbols zli te z5;. To begin with,
we generate g true score, Xj, such that
%y~ N(u,cu%x”). In 2ll runs, v = 0 and cyx“ = 9.
In additionl we generate three error terms: Vi,
q;, and w; such that each is normally distributed
with variances egual to 1 or 4 units depending on
the simulation. Here, wj can be considered assign-
ment error and vy and q  are pretest and posttest
error, respectively. We can now construct & pre-
test, xj, such that

!

Xi = Xi + Vi

Once we generate zi using one of the five models
described below we can comstruct & posttest, Yio
such that

3

voo® boz: XL < gy

where bg, the program effect, is either 0 or 2 (i.e.,

the null case or a gein of three units). The five

models used to generate z., are

(1) Assignment by pretest plus independent
assignment error:

*

i
= 0 ctherwise

(2) Assignment by true score:

224 = 1 iff x; < 0

zly = 1 iff (x; + vy +wy) <0

= 0 otherwise
(3) Assigmment by true score plus independent
assignment error:
- cer * Lo
234 = 1 iff (xi Fwy) <0
= 0 otherwise
(4) Assignment by true score and pretest
. i iff x*
265 = 1 iff % < 0 and %5 < 0
= 0 otherwise
(5) Assignment by true score intervals:

255 = 1 4ff x} < -1.0 or (.5 < x,<0)
= 0 otherwise

For each of the five models of misassignment we use
relatively low or high error variances (i.e., equal
to 1 or 4) and a gain, by, of either O or 3 units.
Thus we have 5(assignment models) X 2(gain) X
2(error variance) = 20 separate conditiomns. For
each condition twenty independent simulations were
carried out yielding a total of 20 X 20 = 400 rums,
each based on 1000 individual cases (i.e., n=1000).
For each run the following general linear re-
gression model was used to estimate the effect:

1
y. = bozi + b1 + b2xi + ey

i
where
y; = posttest for individual i
xj = pretest for individual i

bg = parameter for program effect
estimate

by = parameter for intercept
b, = parameter for linear slope

e. = residual ~ N(O,cg)

i

z; = real assignmentm(i.e., zly ... 25;)
or estimate of z; as described
below

For each run five analvses were conducted:

(1) Analysis using real assignment (i.e., 21y
ce zsi, depending on the simulation) in
place of z]. "

(2) Analvsis using moving average estimate of zg-

(3) Analysis usipg assignment percentage
estimate of z,.

(4) VWeighted anal¥sis using moving average
estimate.

(5) Weighted analvsis using assignment
percentage estimate.

Jith the analyvsis based on real assignment we
expect treatment estimates to be biased for all
zssignment models except for zl;, assignment by
pretest plus independent assignment error. In
this case misassignment occurs randomly with
respect tc the pretest and will be reflectec
equally on the average in both groups. If the



relative assignment variable approach successfully
removes selection bias, the four analyses based on
éi should vield unbiased estimates for all five
assignment models.

The results are presented in Table 1 (bo = Q;
low error variances) Table 2 (b, = 0; high error
variances), Tatle 3 (b = 3; low error variances)
and Table &4 (bg = 3; high error variances). Each
table presents, for all five assignment models
and all five analyses, the average gain, the
standard error of the average gain and the minimum
and maximum obtained gain for twenty runs. Results
will be considered biased jf the true gain, by,
lies outside the interval b, + 3SE(bp).

Several conclusions can be drawn from the
tables. TFirst, as expectred, estimates from the
analyses based on real assignment are biased
except when misassignment is random. . Second, the
moving average estimates of relative assignment
appear to yield unbiased estimates of gain for
most of the models and conditioms which were
studied. Even for the three (out of twenty) sets
of conditions where bias is detected two of these
had average estimates which were not greatly
biased, especially when considered relative to
estimates from the analyses by real assjgnment.
Third, it appears that estimates from the moving
average analyses are in general less biased than
the ones from the assignment percentage ones. This
may be in part because the assignment percentage
functions in these simulations are bases on only
50 intervals of gnly 20 24 values each. Thus,
the estimate of z; can only take on twenty values
between 0 and 1 (i.e., 0, .05, .10 ... .95, 1.0)
whereas the moving average estimate is more
finely differentiated. Finally, the estimates
vielded by relative assignment variable analyses
appear to be less biased when error variances are
low. It may be that with large sample sizes (i.e.,
larger than n=1000) and correspondingly greater
statistical power, estimates would in general be
unbiased. In fact, Spiegelman (1976, 1977 and
1979) has been careful to point out that the
method is efficient only for large sample sizes.

Illustrative Real Data Analyses. Two sets of
fuzzy regression-discontinuity data were con-
structed from the Third Grade Reading scores for
a Title I compensatory education reading program
in Providence, Rhode Island (Trochim, 1980). It
is useful to apply the relative assignment vari-
able approach to such data to see how the assign-
ment functions differ from the simulations and to
detect any unforseen difficulties in gpplicatiom.
The linear model used in the simulations is
applied here because visual inspection of the data
indicates that a linear model may be appropriate
and because there are relatively few program par-
ticipant cases available for estimating changes
in slope or function. Only the weighted and un-
weighted moving average analyses were carried out
(in addition to analysis by real assignment)
because the illustrative simulations indicate
that they were less likely to exhibit bias than
thHe assignment percentage estimates. In a pre-
vious analysis of data from this program where
sharp regression-discontinuity data were used,
the estimate of gain for the same linear model
was by = 29.73 with a standard error of 6.12
Trocﬂim, 1980).

The first set of fuzzv data results from the
use of the vocebulary subscale of the reading
pretest rather than the total sccre. Assignment

was sharp relative teo the' total score but is fuzzy
relative to the subscale. The bivariate plot of
the data is shown in Figure 4. Here, the analysis
by real assignment, z., showed no significant gain
(by = 11.13, SE(by) =76.22) whereas the relative
assignment variabge analyses showed gains similar
to the one found in the sharp regression-disconti-
nuity case (BO = 30.05, SE(SO) = 10.13 for the un-
weighted moving average analysis and bg = 29.43,
SE(BO) = .56 for the weighted moving average
analysis).

The second set of fuzzy data is from the same
program and results from the inclusion of the scores
of children who come from schools in the district
which were ineligible for service. Some of these
students qualify for the program on the basis of
their pretest score. The total reading score is
used for the pretest and posttest and the bivariate
distribution is shown in Figure 5. Here, all esti-
mates of program effect are sigmificant at the .05
level although the estimate from the analysis by
real assignmwent appears smaller thanm the relative
assignment estimates (by = 23.32, SE(b)) = 5.60
for real assignment analysis, bg = 47.82, SE(BO) =
7.37 for unweighted moving average analysis anc
50 = 48.77, SE(bg) = .41 for the weighted moving
average analysis). .

Clearly, the results of analyses based on real
assignment tend to differ from those based on rela-
tive assignment. Given that the former are likely
to be biased and the latter are not (at least under
the conditions specified here), one might place
greater faith in the relative assignment analyses
and conclude that this reading program had a posi-
tive effect.

Conclusions. While the relarive assignment vari-
able approach, especiallv using a weighted moving
average analysis, appears in general to yield un-
biased estimates in several models where selection
bias is expected, there are still important unan-
swered questions. TFor example, it is not clear
whether unbiased estimates will be obtained under
more realistic or complex assignment models. Spe-
cifically, it is important to determine by simula-
tions whether estimates are biased when the pretest-
posttest relationship is nonlinear, when a wider
variety of sample sizes are tested, and when mis-
assigmment occurs nearer the extremes of the pre~
test distribution. In additiomn, it is not yet
clear whether the assignment percentage procedure
yvields biased results in general or whether the
biases obtained here are related to sample size,
interval size or other conditions chosen for these
simulations. More definitive simulations than
these illustrative ones require a greater number
of runs for a wider variety of conditions.

It is reasonable to conclude that appropriate
estimates of the relative assignment variable can
be used to produce realistic estimates of program
effect under many conditions where selection bias
is expected. On this basis we might tentatively
advance the outline of z more general analytic
approach for pretest-posttest group designs. First,
if the true randomized experiment or regression-
discontinuity design are used and assignment has
been implemented correctliv the analvsis may be
based on the regression cof v, on x:, z; polimomials
in x;, interactions of Xy and zj, and cther a&appro-
priate covariates. Second, if the Iuzzy regression-
discontinuity or non-equivalent group designs ave
used or if the assignment procedures of 2 true
regression~discontinuity or randomized cesign are
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not correctly implemented, an estimste of Z;, the Table 1
relative assignment variable, can be used in

- ) = 0, error variances = 1
place of z; in the analytic model, at least as b0 > - s .
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Table 3

bn = 3, error variances = 1
0 - s

Model snalvsis* by  SE(bg) min(by) max(bg)
21y Real 2,992 .025 2.808  3.135
MA 3.161 048 2,747  3.53S
AP 3.025  .043  2.679  3.442
MA (w) 3.126 053  2.646  3.510
AP (W) 3.017 048 2.593  3.425
22,  Real 1.860  .021 1.686  2.079
Ma 2.995 047  2.659  3.380
AP 2.804  .049 2.393 3,209
Ma (W) 2,995  .049 2.653  3.355
AP (W) 2.830  .048 2.435  3.199
z3;  Real 2,086  .027 1.785  2.225
MA 2.976  .066 2.316  3.485
AP 2,758 .053  2.257 3,160
MA () 2,976  .062 2.365  3.532
AP (w) 2.783  .048 2.277  3.055
z4;  Real 2.425  .034  2.012  2.705
MA 3.184 .04l 2,812  3.564
AP 2.969  .039 2.616  3.278
Ma (W) 3.158  .040 2.790  3.572
AP (W) 2.975  .038 2.626  3.323
z5;  Real 1.992  .023 1.862  2.231
Ma 3.098  .058 2.599  3.431
AP 2.908  .049  2.479 3,199
MA (W) 3.117  .063 2.588  3.648
AP (w) 2.960  .056 2.553  3.431
Table 4

by = 3, error variances = &4

Model Analysis* ib SE(gb) min(bg) max(bg)

zly Real 2.908 .056  2.203 3.356
. MA 2.944 .148 1.844 4,146
AP 2.874 .122 1.867 3.855

MA (w) 2.951 .157 1.851 4,273

AP (w) 2,876 .127 1.889 3.936

224 Real L4601 .047 -.134 .785
Ma 2.969 .130 1.930 4.131

AP 2.007 102 1.304 2.956

MA (w) 3.017 125 2.047 4.261

AP (w) 2.134 .098  1.437 3,047

234 Real 1.277 .043 .894 1.508
MA 2.001 L2711 .039 4,764

AP 1.553 .168 .363 3.016

MA (W) 2.038 .266 L0647 4,697

AP (w) 1.596 .176 .351 3.335

244 Real 1.343 . 051 . 869 1.821
MA 3.139 .081 2.248 3.869

AP 2.841 .081 1.814 3.627

MA (w) 3.164 .084 2,242 3.936

AP (w) 2.892 .083  1.847 3.713

255 Real .524 .038 .235 . 900
MA 2.568 .165  1.001 3.895

AP 1.901 .126 .908 2.806

MA (W) 2.650 .183 1.094 4,229

AP (w) 2.019 L1410 1.032 3.161

*Real=real assignment; MA=moving average; AP=
assignment percentage: MA(w)=weighted moving
average; AP(w)=weighted assignment percentage



Figure 1
Relative Assignment Variable Function for the True Experiment
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Figure 2
Relative Assignment Variable Function for Regression-Discontinuity
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Figure 3

Relative Assignment Variable Functions for
Fuzzy Regression-Discontinuity and the Non-equivalent Group Design
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Figure 4
REGRESSION-DISCONTINUITY . PRERD3
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